

The dynamical system generated by the greedy algorithm
Jonathan Hoseana
Joint work with Steven

Basic idea

Basic idea

Fix a set of positive integers:

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
50=
$$

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
50=21+
$$

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
50=21+21+
$$

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
50=21+21+8
$$

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
50=21+21+8
$$

success

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
50=21+21+8
$$

success

$$
83=
$$

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& 83=21+
\end{aligned}
$$

success

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& 83=21+21+
\end{aligned}
$$

success

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& 83=21+21+21+
\end{aligned}
$$

success

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& 83=21+21+21+18+
\end{aligned}
$$

success

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& 83=21+21+21+18+\underset{\substack{\uparrow \\
\uparrow}}{ } \quad \begin{array}{l}
\text { a non-zero residue }
\end{array}
\end{aligned}
$$

success
fail

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions-using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& 83=21+21+21+18+2 \\
& \substack{\uparrow \\
\\
\\
\quad \text { a non-zero residue }}
\end{aligned}
$$

success
fail

Questions:

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions- using the greedy algorithm.

$$
\begin{aligned}
& 50=21+21+8 \\
& \text { success } \\
& 83=21+21+21+18+\underset{\uparrow}{2} \\
& \text { fail } \\
& \text { a non-zero residue }
\end{aligned}
$$

Questions: - Asymptotic behaviour of the representation's length?

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions-using the greedy algorithm.

$$
\begin{aligned}
50=21+21+8 & \text { success } \\
83=21+21+21+18+\underset{\uparrow}{\uparrow} & \text { fail } \\
& \\
&
\end{aligned}
$$

Questions: - Asymptotic behaviour of the representation's length?

- Density of integers corresponding to each possible residue?

Basic idea

Fix a set of positive integers: $\quad A=\{3,8,18,21\}$.
Try to represent non-negative integers as sums of elements of A -allowing repetitions-using the greedy algorithm.

$$
\begin{aligned}
50=21+21+8 & \text { success } \\
83=21+21+21+18+\underbrace{2}_{\uparrow} & \text { fail } \\
& \text { a non-zero residue }
\end{aligned}
$$

Questions: - Asymptotic behaviour of the representation's length?

- Density of integers corresponding to each possible residue?

$$
A=\{3,8,18,21\}
$$

$A=\{3,9,18,21\}$

Notation

Notation

- Fix $A \subseteq \mathbb{N}$, finite or infinite.

Notation

- Fix $A \subseteq \mathbb{N}$, finite or infinite.
- Define $\mathbf{G}_{A}: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ by

$$
\mathbf{G}_{A}(x)=x-\mathbf{g}_{A}(x),
$$

where $\mathbf{g}_{A}(x)$ is the largest element of $\{0,1, \ldots, \min (A)-1\} \cup A$ not exceeding x.

Notation

- Fix $A \subseteq \mathbb{N}$, finite or infinite.
- Define $\mathbf{G}_{A}: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ by

$$
\mathbf{G}_{A}(x)=x-\mathbf{g}_{A}(x),
$$

where $\mathbf{g}_{A}(x)$ is the largest element of $\{0,1, \ldots, \min (A)-1\} \cup A$ not exceeding x.

- Given $x_{1} \in \mathbb{N}$, generate $\left(x_{n}\right)_{n=1}^{\infty}$ via the recursion

$$
x_{n+1}=\mathbf{G}_{A}\left(x_{n}\right)
$$

for every $n \in \mathbb{N}$.

Notation

- Fix $A \subseteq \mathbb{N}$, finite or infinite.
- Define $\mathbf{G}_{A}: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ by

$$
\mathbf{G}_{A}(x)=x-\mathbf{g}_{A}(x),
$$

where $\mathbf{g}_{A}(x)$ is the largest element of $\{0,1, \ldots, \min (A)-1\} \cup A$ not exceeding x.

- Given $x_{1} \in \mathbb{N}$, generate $\left(x_{n}\right)_{n=1}^{\infty}$ via the recursion

$$
x_{n+1}=\mathbf{G}_{A}\left(x_{n}\right)
$$

for every $n \in \mathbb{N}$.

- Obtain a representation of x_{1} :

$$
x_{1}=\mathbf{g}_{A}\left(x_{1}\right)+\cdots+\mathbf{g}_{A}\left(x_{R_{A}\left(x_{1}\right)-1}\right)+r_{A}\left(x_{1}\right),
$$

where

$$
R_{A}\left(x_{1}\right)=\min \left\{n \in \mathbb{N}: x_{n}<\min (A)\right\} \quad \text { and } \quad r_{A}\left(x_{1}\right)=x_{R_{A}\left(x_{1}\right)} .
$$

A prototypical special case

$$
A=\mathbb{P}
$$

(primes, including 1 "for convenience")
S. S. Pillai (1930)
https://upload.wikimedia.org/wikipedia
/commons/0/05/S.S._Pillai.jpg

A prototypical special case

$$
A=\mathbb{P}
$$

https://upload.wikimedia.org/wikipedia
/commons/0/05/S.S._Pillai.jpg
(primes, including 1 "for convenience")

Fact [Pillai, 1930]

We have $\lim \sup R_{\mathbb{P}}(x)=\infty$.

$$
x \rightarrow \infty
$$

A prototypical special case

$$
A=\mathbb{P}
$$

S. S. Pillai (1930)
https://upload.wikimedia.org/wikipedia
/commons/0/05/S.S._Pillai.jpg
(primes, including 1 "for convenience")

Fact [Pillai, 1930]

We have $\lim \sup R_{\mathbb{P}}(x)=\infty$.

$$
X \rightarrow \infty
$$

Proof

Given $x \in \mathbb{N}$. Choose consecutive $p_{1}, p_{2} \in \mathbb{P}$ with $p_{2}-p_{1} \geqslant x+1$. ($\Pi p+2, \ldots, \Pi p+x+1$ all composite.) $p \leqslant x+1 \quad p \leqslant x+1$
Then $\mathbf{G}_{\mathbb{P}}\left(p_{1}+x\right)=x$, and so $R_{\mathbb{P}}\left(p_{1}+x\right)=R_{\mathbb{P}}(x)+1$.

A prototypical special case

Let $\eta_{k}:=\min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$.

A prototypical special case

Let $\eta_{k}:=\min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$. Then

$$
\begin{aligned}
\eta_{2} & =1=1+0 \\
\eta_{3} & =4=3+1+0 \\
\eta_{4} & =27=23+3+1+0 \\
\eta_{5} & =1354=1327+23+3+1+0 \\
\eta_{6} & =401429925999155061 \\
& =401429925999153707+1327+23+3+1+0 .
\end{aligned}
$$

A prototypical special case

Let $\eta_{k}:=\min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$. Then

$$
\begin{aligned}
\eta_{2} & =1=1+0 \\
\eta_{3} & =4=3+1+0 \\
\eta_{4} & =27=23+3+1+0 \\
\eta_{5} & =1354=1327+23+3+1+0 \\
\eta_{6} & =401429925999155061 \\
& =401429925999153707+1327+23+3+1+0 .
\end{aligned}
$$

Fact

For every $k \geqslant 2$ we have $\mathbf{G}_{\mathbb{P}}\left(\eta_{k+1}\right)=\eta_{k}$.

A prototypical special case

Let $\eta_{k}:=\min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$. Then

$$
\begin{aligned}
\eta_{2} & =1=1+0 \\
\eta_{3} & =4=3+1+0 \\
\eta_{4} & =27=23+3+1+0 \\
\eta_{5} & =1354=1327+23+3+1+0 \\
\eta_{6} & =401429925999155061 \\
& =401429925999153707+1327+23+3+1+0 .
\end{aligned}
$$

Fact

For every $k \geqslant 2$ we have $\mathbf{G}_{\mathbb{P}}\left(\eta_{k+1}\right)=\eta_{k}$.
Thus for every $k \geqslant 2$ we have $\eta_{k+1}=\eta_{k}+p_{1}$, where $\left(p_{1}, p_{2}\right)$ is the first pair of consecutive primes with $p_{2}-p_{1} \geqslant \eta_{k}+1$.

A prototypical special case

Bertrand's postulate [Chebyshev, 1852]
For every integer $x \geqslant 2$ there exists $p \in \mathbb{P}$ such that $x<p<2 x$.

A prototypical special case

Bertrand's postulate [Chebyshev, 1852]

For every integer $x \geqslant 2$ there exists $p \in \mathbb{P}$ such that $x<p<2 x$.

Consequence

For every $x \in \mathbb{N}_{0}$ we have

$$
1 \leqslant x_{R_{\mathbb{P}}(x)-1} \leqslant \frac{x_{R_{\mathbb{P}}}(x)-2}{2} \leqslant \frac{x_{R_{\mathbb{P}}(x)-3}}{2^{2}} \leqslant \cdots \leqslant \frac{x_{1}}{2^{R_{\mathbb{P}}(x)-2}}=\frac{x}{2^{R_{\mathbb{P}}(x)-2}}
$$

Thus,

$$
R_{\mathbb{P}}(x) \ll \ln x .
$$

A prototypical special case

An improvement of Bertrand's postulate [Hoheisel, 1930]
There exist $\theta \in(0,1)$ and $X_{0} \in \mathbb{N}$ such that for every $x \geqslant X_{0}$ the interval $\left[x-x^{\theta}, x\right]$ contains a prime.

A prototypical special case

An improvement of Bertrand's postulate [Hoheisel, 1930]

There exist $\theta \in(0,1)$ and $X_{0} \in \mathbb{N}$ such that for every $x \geqslant X_{0}$ the interval $\left[x-x^{\theta}, x\right]$ contains a prime.

Consequence [Luca \& Thangadurai, 2009]

There exist $\theta \in(0,1)$ and $X_{0}^{\prime} \in \mathbb{N}$ such that for every $x \geqslant X_{0}^{\prime}$ we have

$$
X_{0}^{\prime} \leqslant x_{K_{\mathbb{P}}(x)} \leqslant x_{K_{\mathbb{P}}(x)-1}{ }^{\theta} \leqslant x_{K_{\mathbb{P}}(x)-2} \theta^{\theta^{2}} \leqslant \cdots \leqslant x_{1} \theta^{K_{\mathbb{P}}(x)-1}=x^{\theta^{K_{\mathbb{P}}(x)-1}}
$$

where $K_{\mathbb{P}}(x):=\max \left\{k \in \mathbb{N}: x_{k} \geqslant X_{0}^{\prime}\right\}$. Thus,

$$
R_{\mathbb{P}}(x) \ll \ln \ln x
$$

A modest variant

$A=\mathbb{P}^{*} \quad$ (prime powers including 1)

A modest variant

$A=\mathbb{P}^{*} \quad($ prime powers including 1$)$

Facts

We have

$$
\limsup _{x \rightarrow \infty} R_{\mathbb{P}^{*}}(x)=\infty \quad \text { and } \quad R_{\mathbb{P}^{*}}(x) \ll \ln \ln x
$$

A modest variant

$$
A=\mathbb{P}^{*} \quad(\text { prime powers including } 1)
$$

Facts

We have

$$
\limsup _{x \rightarrow \infty} R_{\mathbb{P}^{*}}(x)=\infty \quad \text { and } \quad R_{\mathbb{P}^{*}}(x) \ll \ln \ln x
$$

Let $\xi_{k}:=\min R_{\mathbb{P}^{*}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$.

A modest variant

$$
A=\mathbb{P}^{*} \quad(\text { prime powers including } 1)
$$

Facts

We have

$$
\limsup _{x \rightarrow \infty} R_{\mathbb{P}^{*}}(x)=\infty \quad \text { and } \quad R_{\mathbb{P}^{*}}(x) \ll \ln \ln x
$$

Let $\xi_{k}:=\min R_{\mathbb{P}^{*}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$. Then

$$
\begin{aligned}
& \xi_{2}=1=1+0 \\
& \xi_{3}=6=5+1+0 \\
& \xi_{4}=95=89+5+1+0 \\
& \xi_{5}=360748=360653+89+5+1+0
\end{aligned}
$$

A modest variant

$$
A=\mathbb{P}^{*} \quad(\text { prime powers including } 1)
$$

Facts

We have

$$
\limsup _{x \rightarrow \infty} R_{\mathbb{P}^{*}}(x)=\infty \quad \text { and } \quad R_{\mathbb{P}^{*}}(x) \ll \ln \ln x
$$

Let $\xi_{k}:=\min R_{\mathbb{P} *}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \geqslant 2$. Then

$$
\begin{aligned}
& \xi_{2}=1=1+0 \\
& \xi_{3}=6=5+1+0 \\
& \xi_{4}=95=89+5+1+0 \\
& \xi_{5}=360748=360653+89+5+1+0 .
\end{aligned}
$$

For every $k \geqslant 2$ we have $\xi_{k+1}=\xi_{k}+q_{1}$, where $\left(q_{1}, q_{2}\right)$ is the first pair of consecutive prime powers with $q_{2}-q_{1} \geqslant \xi_{k}+1$.

$R_{A}(x)$ for arbitrary A

Facts [Mukhopadhyay, et al., 2015]

$R_{A}(x)$ for arbitrary A

Facts [Mukhopadhyay, et al., 2015]
If $|A|<\infty$, then $\limsup _{x \rightarrow \infty} R_{A}(x)=\infty$ and $R_{A}(x) \ll x$.

$R_{A}(x)$ for arbitrary A

Facts [Mukhopadhyay, et al., 2015]
If $|A|<\infty$, then $\limsup _{x \rightarrow \infty} R_{A}(x)=\infty$ and $R_{A}(x) \ll x$.

$$
x \rightarrow \infty
$$

If $|A|=\infty$, say $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ with $a_{1}<a_{2}<\cdots$, then

- $\limsup R_{A}(x)=\infty$ if and only if $\limsup \left(a_{n}-a_{n-1}\right)=\infty$;

$R_{A}(x)$ for arbitrary A

Facts [Mukhopadhyay, et al., 2015]

If $|A|<\infty$, then $\limsup R_{A}(x)=\infty$ and $R_{A}(x) \ll x$.

$$
x \rightarrow \infty
$$

If $|A|=\infty$, say $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ with $a_{1}<a_{2}<\cdots$, then

- $\limsup _{x \rightarrow \infty} R_{A}(x)=\infty$ if and only if $\limsup _{n \rightarrow \infty}\left(a_{n}-a_{n-1}\right)=\infty$;
- if there exist $X_{0} \in \mathbb{N}$ and $f:[0, \infty) \rightarrow[0, \infty)$ such that for every $x \geqslant X_{0}$ we have $[x-f(x), x] \cap A \neq \varnothing$,
- there exist $X_{0} \in \mathbb{N}$ such that for every $x \geqslant X_{0}$ we have $\mathbf{G}_{A}(x) \leqslant f(x)$,
- there exist $X_{0}^{\prime} \in \mathbb{N}$ such that for every $x \geqslant X_{0}^{\prime}$ we have $X_{0}^{\prime} \leqslant f^{K_{A}(x)-1}(x)$, where $K_{A}(x):=\max \left\{k \in \mathbb{N}: x_{k} \geqslant X_{0}^{\prime}\right\}$.

$R_{A}(x)$ for arbitrary A

Facts [Mukhopadhyay, et al., 2015]

If $|A|<\infty$, then $\limsup R_{A}(x)=\infty$ and $R_{A}(x) \ll x$.

$$
x \rightarrow \infty
$$

If $|A|=\infty$, say $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ with $a_{1}<a_{2}<\cdots$, then
$-\limsup R_{A}(x)=\infty$ if and only if $\limsup \left(a_{n}-a_{n-1}\right)=\infty$;

- if there exist $X_{0} \in \mathbb{N}$ and $f:[0, \infty) \rightarrow[0, \infty)$ such that for every $x \geqslant X_{0}$ we have $[x-f(x), x] \cap A \neq \varnothing$,
- there exist $X_{0} \in \mathbb{N}$ such that for every $x \geqslant X_{0}$ we have $\mathbf{G}_{A}(x) \leqslant f(x)$,
- there exist $X_{0}^{\prime} \in \mathbb{N}$ such that for every $x \geqslant X_{0}^{\prime}$ we have $X_{0}^{\prime} \leqslant f^{K_{A}(x)-1}(x)$, where $K_{A}(x):=\max \left\{k \in \mathbb{N}: x_{k} \geqslant X_{0}^{\prime}\right\}$.

Two notable special cases

$$
\begin{aligned}
& f(x)=\delta x, \delta \in(0,1) \Rightarrow R_{A}(x) \ll \ln x \\
& f(x)=x^{\theta}, \theta \in(0,1) \Rightarrow R_{A}(x) \ll \ln \ln x
\end{aligned}
$$

$R_{A}(x)$ for arbitrary A

Applications [Mukhopadhyay, et al., 2015]

- Let A be the set of all primes of the form $m^{2}+n^{2}+1$ where $m, n \in \mathbb{N}$ and $\operatorname{gcd}(m, n)=1$. One can take $f(x)=x^{115 / 121}[\mathrm{Wu}, 1998]$. Thus,

$$
R_{A}(x) \ll \ln \ln x
$$

$R_{A}(x)$ for arbitrary A

Applications [Mukhopadhyay, et al., 2015]

- Let A be the set of all primes of the form $m^{2}+n^{2}+1$ where $m, n \in \mathbb{N}$ and $\operatorname{gcd}(m, n)=1$. One can take $f(x)=x^{115 / 121}[\mathrm{Wu}, 1998]$. Thus,

$$
R_{A}(x) \ll \ln \ln x
$$

- Let A be the set of all square-free numbers: those which are divisible by no square other than 1 . One can take $f(x)=x^{1 / 5} \ln x$ [Filaseta and Trifonov, 1992]. Thus,

$$
R_{A}(x) \ll \ln \ln x .
$$

$R_{A}(x)$ for arbitrary A

Applications [Mukhopadhyay, et al., 2015]

- Let A be the set of all primes of the form $m^{2}+n^{2}+1$ where $m, n \in \mathbb{N}$ and $\operatorname{gcd}(m, n)=1$. One can take $f(x)=x^{115 / 121}[\mathrm{Wu}, 1998]$. Thus,

$$
R_{A}(x) \ll \ln \ln x
$$

- Let A be the set of all square-free numbers: those which are divisible by no square other than 1 . One can take $f(x)=x^{1 / 5} \ln x$ [Filaseta and Trifonov, 1992]. Thus,

$$
R_{A}(x) \ll \ln \ln x
$$

- Let $A=A_{\mathcal{B}}$ be the set of all \mathcal{B}-free numbers: those which are divisible by no element of a fixed set $\mathcal{B}=\left\{b_{k}\right\}_{k=1}^{\infty}$ satisfying $\sum_{k=1}^{\infty} 1 / b_{k}<\infty$ and $\operatorname{gcd}\left(b_{i}, b_{j}\right)=1$ for all $i \neq j$. One can take $f(x)=x^{33 / 79}$ [Zhai, 2000]. Thus,

$$
R_{A}(x) \ll \ln \ln x .
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$. For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$. For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$.

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$. For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=0$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{ \}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{ \} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$. For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=1$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{ \} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=2$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$. For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=3$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=4$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=5$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=6$ we have

$$
\begin{aligned}
r_{A}^{-1}(\{0\}) \cap[0, x] & =\{0,3,6\}, \\
r_{A}^{-1}(\{1\}) \cap[0, x] & =\{1,4\}, \\
r_{A}^{-1}(\{2\}) \cap[0, x] & =\{2,5\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=7$ we have

$$
\begin{aligned}
r_{A}^{-1}(\{0\}) \cap[0, x] & =\{0,3,6\}, \\
r_{A}^{-1}(\{1\}) \cap[0, x] & =\{1,4,7\}, \\
r_{A}^{-1}(\{2\}) \cap[0, x] & =\{2,5\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=8$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=9$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=10$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=11$ we have

$$
\begin{aligned}
r_{A}^{-1}(\{0\}) \cap[0, x] & =\{0,3,6,8,11\}, \\
r_{A}^{-1}(\{1\}) \cap[0, x] & =\{1,4,7,9\}, \\
r_{A}^{-1}(\{2\}) \cap[0, x] & =\{2,5,10\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=12$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=13$ we have

$$
\begin{aligned}
r_{A}^{-1}(\{0\}) \cap[0, x] & =\{0,3,6,8,11\}, \\
r_{A}^{-1}(\{1\}) \cap[0, x] & =\{1,4,7,9,12\}, \\
r_{A}^{-1}(\{2\}) \cap[0, x] & =\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=14$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=15$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=16$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14,16\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=17$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14,16\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15,17\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=18$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14,16,18\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15,17\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=19$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14,16,18\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15,17,19\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=20$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14,16,18\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15,17,19\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13,20\} .
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

Write $A=\left\{a_{n}\right\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup\{\infty\}$ and $a_{n}<a_{n+1}$ for $1 \leqslant n<N$.
For every $t \in\left\{0, \ldots, a_{1}-1\right\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$
\mathbf{d} r_{A}^{-1}(\{t\}):=\lim _{x \rightarrow \infty} \frac{\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|}{x+1}
$$

if the limit exists.

Illustration

Suppose $A=\{3,8,18,21\}$. For $x=20$ we have

$$
\begin{aligned}
& r_{A}^{-1}(\{0\}) \cap[0, x]=\{0,3,6,8,11,14,16,18\}, \\
& r_{A}^{-1}(\{1\}) \cap[0, x]=\{1,4,7,9,12,15,17,19\}, \\
& r_{A}^{-1}(\{2\}) \cap[0, x]=\{2,5,10,13,20\} .
\end{aligned}
$$

Fact

For every $x \in \mathbb{N}_{0}$ we have

$$
\left|r^{-1}(\{0\}) \cap[0, x]\right| \geqslant \cdots \geqslant\left|r^{-1}\left(\left\{a_{1}-1\right\}\right) \cap[0, x]\right| .
$$

$r_{A}(x)$ for arbitrary A

If $A \subseteq a_{1} \mathbb{N}$, then for every $t \in\left\{0, \ldots, a_{1}-1\right\}$ and $x \in \mathbb{N}_{0}$ we have $r_{A}(x)=x \bmod a_{1}$, and so

$$
\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|=\left|\left\{y \in \mathbb{N}_{0}: y \bmod a_{1}=t\right\} \cap[0, x]\right|=\left\lfloor\frac{x-t}{a_{1}}\right\rfloor+1 .
$$

$r_{A}(x)$ for arbitrary A

If $A \subseteq a_{1} \mathbb{N}$, then for every $t \in\left\{0, \ldots, a_{1}-1\right\}$ and $x \in \mathbb{N}_{0}$ we have $r_{A}(x)=x \bmod a_{1}$, and so

$$
\left.\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|=\left|\left\{y \in \mathbb{N}_{0}: y \bmod a_{1}=t\right\} \cap[0, x]\right|=\left\lvert\, \frac{x-t}{a_{1}}\right.\right\rfloor+1
$$

It follows that for every $x \in \mathbb{N}_{0}$ we have

$$
\frac{\left|r^{-1}\left(\left\{a_{1}-1\right\}\right) \cap[0, x]\right|}{x+1} \geqslant \frac{\left\lfloor(x+1) / a_{1}\right\rfloor}{x+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}}
$$

and

$$
\frac{\left|r^{-1}(\{0\}) \cap[0, x]\right|}{x+1} \leqslant \frac{\left\lfloor x / a_{1}\right\rfloor+1}{\left\lfloor x / a_{1}\right\rfloor a_{1}+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}} .
$$

$r_{A}(x)$ for arbitrary A

If $A \subseteq a_{1} \mathbb{N}$, then for every $t \in\left\{0, \ldots, a_{1}-1\right\}$ and $x \in \mathbb{N}_{0}$ we have $r_{A}(x)=x \bmod a_{1}$, and so

$$
\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|=\left|\left\{y \in \mathbb{N}_{0}: y \bmod a_{1}=t\right\} \cap[0, x]\right|=\left\lfloor\frac{x-t}{a_{1}}\right\rfloor+1
$$

It follows that for every $x \in \mathbb{N}_{0}$ we have

$$
\frac{\left|r^{-1}\left(\left\{a_{1}-1\right\}\right) \cap[0, x]\right|}{x+1} \geqslant \frac{\left\lfloor(x+1) / a_{1}\right\rfloor}{x+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}}
$$

and

$$
\frac{\left|r^{-1}(\{0\}) \cap[0, x]\right|}{x+1} \leqslant \frac{\left\lfloor x / a_{1}\right\rfloor+1}{\left\lfloor x / a_{1}\right\rfloor a_{1}+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}} .
$$

If $|A|<\infty$ and $A \nsubseteq a_{1} \mathbb{N}$

$r_{A}(x)$ for arbitrary A

If $A \subseteq a_{1} \mathbb{N}$, then for every $t \in\left\{0, \ldots, a_{1}-1\right\}$ and $x \in \mathbb{N}_{0}$ we have $r_{A}(x)=x \bmod a_{1}$, and so

$$
\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|=\left|\left\{y \in \mathbb{N}_{0}: y \bmod a_{1}=t\right\} \cap[0, x]\right|=\left\lfloor\frac{x-t}{a_{1}}\right\rfloor+1
$$

It follows that for every $x \in \mathbb{N}_{0}$ we have

$$
\frac{\left|r^{-1}\left(\left\{a_{1}-1\right\}\right) \cap[0, x]\right|}{x+1} \geqslant \frac{\left\lfloor(x+1) / a_{1}\right\rfloor}{x+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}}
$$

and

$$
\frac{\left|r^{-1}(\{0\}) \cap[0, x]\right|}{x+1} \leqslant \frac{\left\lfloor x / a_{1}\right\rfloor+1}{\left\lfloor x / a_{1}\right\rfloor a_{1}+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}} .
$$

If $|A|<\infty$ and $A \nsubseteq a_{1} \mathbb{N}$ then for every $i \in \mathbb{N}$,

$$
\begin{aligned}
\mid r_{A}^{-1}(\{0\}) \cap\left[(i-1) a_{N},\right. & \left.i a_{N}-1\right] \mid \\
& -\left|r_{A}^{-1}\left(\left\{a_{1}-1\right\}\right) \cap\left[(i-1) a_{N}, i a_{N}-1\right]\right| \geqslant 1,
\end{aligned}
$$

$r_{A}(x)$ for arbitrary A

If $A \subseteq a_{1} \mathbb{N}$, then for every $t \in\left\{0, \ldots, a_{1}-1\right\}$ and $x \in \mathbb{N}_{0}$ we have $r_{A}(x)=x \bmod a_{1}$, and so

$$
\left.\left|r_{A}^{-1}(\{t\}) \cap[0, x]\right|=\left|\left\{y \in \mathbb{N}_{0}: y \bmod a_{1}=t\right\} \cap[0, x]\right|=\left\lvert\, \frac{x-t}{a_{1}}\right.\right\rfloor+1
$$

It follows that for every $x \in \mathbb{N}_{0}$ we have

$$
\frac{\left|r^{-1}\left(\left\{a_{1}-1\right\}\right) \cap[0, x]\right|}{x+1} \geqslant \frac{\left\lfloor(x+1) / a_{1}\right\rfloor}{x+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}}
$$

and

$$
\frac{\left|r^{-1}(\{0\}) \cap[0, x]\right|}{x+1} \leqslant \frac{\left\lfloor x / a_{1}\right\rfloor+1}{\left\lfloor x / a_{1}\right\rfloor a_{1}+1} \xrightarrow{x \rightarrow \infty} \frac{1}{a_{1}} .
$$

If $|A|<\infty$ and $A \nsubseteq a_{1} \mathbb{N}$ then for every $i \in \mathbb{N}$,

$$
\begin{aligned}
\mid r_{A}^{-1}(\{0\}) \cap\left[(i-1) a_{N},\right. & \left.i a_{N}-1\right] \mid \\
& -\left|r_{A}^{-1}\left(\left\{a_{1}-1\right\}\right) \cap\left[(i-1) a_{N}, i a_{N}-1\right]\right| \geqslant 1,
\end{aligned}
$$

and so

$$
\left|r_{A}^{-1}(\{0\}) \cap\left[0, i a_{N}-1\right]\right|-\left|r_{A}^{-1}\left(\left\{a_{1}-1\right\}\right) \cap\left[0, i a_{N}-1\right]\right| \geqslant i .
$$

$r_{A}(x)$ for arbitrary A

Theorem

If $A \subseteq a_{1} \mathbb{N}$, then the density sequence $\left(\mathbf{d} r_{A}^{-1}(\{t\})\right)_{t=0}^{a_{1}-1}$ exists and is constant. The converse also holds in the case $|A|<\infty$.

$r_{A}(x)$ for arbitrary A

Theorem

If $A \subseteq a_{1} \mathbb{N}$, then the density sequence $\left(\mathbf{d} r_{A}^{-1}(\{t\})\right)_{t=0}^{a_{1}-1}$ exists and is constant. The converse also holds in the case $|A|<\infty$.

Examples

- If $A=\{6 n-3\}_{n=1}^{\infty} \subseteq 3 \mathbb{N}$, then the density sequence is constant.

$r_{A}(x)$ for arbitrary A

Theorem

If $A \subseteq a_{1} \mathbb{N}$, then the density sequence $\left(\mathbf{d} r_{A}^{-1}(\{t\})\right)_{t=0}^{a_{1}-1}$ exists and is constant. The converse also holds in the case $|A|<\infty$.

Examples

- If $A=\{6 n-3\}_{n=1}^{\infty} \subseteq 3 \mathbb{N}$, then the density sequence is constant.
- If $A=\{6 n-3\}_{n=1}^{\infty} \cup B$, where $\varnothing \neq B \subseteq\{6 n-4\}_{n=2}^{\infty} \cup\{6 n-5\}_{n=2}^{\infty}$ and $|B \cap[0, x]|=o(x)$, then the density sequence remains constant although $A \nsubseteq 3 \mathbb{N}$.

$r_{A}(x)$ for arbitrary A

Theorem

If $A \subseteq a_{1} \mathbb{N}$, then the density sequence $\left(\mathbf{d} r_{A}^{-1}(\{t\})\right)_{t=0}^{a_{1}-1}$ exists and is constant. The converse also holds in the case $|A|<\infty$.

Examples

- If $A=\{6 n-3\}_{n=1}^{\infty} \subseteq 3 \mathbb{N}$, then the density sequence is constant.
- If $A=\{6 n-3\}_{n=1}^{\infty} \cup B$, where $\varnothing \neq B \subseteq\{6 n-4\}_{n=2}^{\infty} \cup\{6 n-5\}_{n=2}^{\infty}$ and $|B \cap[0, x]|=o(x)$, then the density sequence remains constant although $A \nsubseteq 3 \mathbb{N}$.
- If $A=\{6 n-3\}_{n=1}^{\infty} \cup B$, where $B=\{4\}$, then

$$
r_{A}^{-1}(\{t\})= \begin{cases}\{0,4,8\} \cup(6 \mathbb{N}-3) \cup(6 \mathbb{N}+1) \cup(6 \mathbb{N}+6), & \text { if } t=0 \\ \{1,5\} \cup(6 \mathbb{N}+4) \cup(6 \mathbb{N}+8), & \text { if } t=1 \\ \{2,6\} \cup(6 \mathbb{N}+5), & \text { if } t=2\end{cases}
$$

and so the density sequence is not constant.

$r_{A}(x)$ for arbitrary A

Suppose $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $d \in \mathbb{N}_{0}$.

$r_{A}(x)$ for arbitrary A

Suppose $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $d \in \mathbb{N}_{0}$. Then for every $x_{1} \in\left[a_{n}^{\prime}+(n-1) d, a_{n+1}^{\prime}+n d\right)$, we have

$$
x_{2}=x_{1}-\left[a_{n}^{\prime}+(n-1) d\right]<\left(a_{n+1}^{\prime}-a_{n}^{\prime}\right)+d .
$$

$r_{A}(x)$ for arbitrary A

Suppose $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $d \in \mathbb{N}_{0}$.
Then for every $x_{1} \in\left[a_{n}^{\prime}+(n-1) d, a_{n+1}^{\prime}+n d\right)$, we have

$$
x_{2}=x_{1}-\left[a_{n}^{\prime}+(n-1) d\right]<\left(a_{n+1}^{\prime}-a_{n}^{\prime}\right)+d
$$

If $a_{n+1}^{\prime}-a_{n}^{\prime}<a_{2}^{\prime}$, then

$$
x_{3}=x_{2}-a_{1}^{\prime}, \quad x_{4}=x_{2}-2 a_{1}^{\prime}, \quad \ldots, \quad r_{A}\left(x_{1}\right)=x_{2}-\left[R_{A}\left(x_{1}\right)-2\right] a_{1}^{\prime}
$$

$r_{A}(x)$ for arbitrary A

Suppose $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $d \in \mathbb{N}_{0}$.
Then for every $x_{1} \in\left[a_{n}^{\prime}+(n-1) d, a_{n+1}^{\prime}+n d\right)$, we have

$$
x_{2}=x_{1}-\left[a_{n}^{\prime}+(n-1) d\right]<\left(a_{n+1}^{\prime}-a_{n}^{\prime}\right)+d
$$

If $a_{n+1}^{\prime}-a_{n}^{\prime}<a_{2}^{\prime}$, then

$$
x_{3}=x_{2}-a_{1}^{\prime}, \quad x_{4}=x_{2}-2 a_{1}^{\prime}, \quad \ldots, \quad r_{A}\left(x_{1}\right)=x_{2}-\left[R_{A}\left(x_{1}\right)-2\right] a_{1}^{\prime}
$$

Thus, $r_{A}\left(x_{1}\right)=0$ if and only if $x_{1}=\left[a_{n}^{\prime}+(n-1) d\right]+i a_{1}^{\prime}$ for some $i \in\left\{0, \ldots,\left\lceil\left(a_{n+1}^{\prime}-a_{n}^{\prime}+d\right) / a_{1}^{\prime}\right\rceil-1\right\}$.

$r_{A}(x)$ for arbitrary A

Suppose $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $d \in \mathbb{N}_{0}$.
Then for every $x_{1} \in\left[a_{n}^{\prime}+(n-1) d, a_{n+1}^{\prime}+n d\right)$, we have

$$
x_{2}=x_{1}-\left[a_{n}^{\prime}+(n-1) d\right]<\left(a_{n+1}^{\prime}-a_{n}^{\prime}\right)+d
$$

If $a_{n+1}^{\prime}-a_{n}^{\prime}<a_{2}^{\prime}$, then

$$
x_{3}=x_{2}-a_{1}^{\prime}, \quad x_{4}=x_{2}-2 a_{1}^{\prime}, \quad \ldots, \quad r_{A}\left(x_{1}\right)=x_{2}-\left[R_{A}\left(x_{1}\right)-2\right] a_{1}^{\prime}
$$

Thus, $r_{A}\left(x_{1}\right)=0$ if and only if $x_{1}=\left[a_{n}^{\prime}+(n-1) d\right]+i a_{1}^{\prime}$ for some $i \in\left\{0, \ldots,\left\lceil\left(a_{n+1}^{\prime}-a_{n}^{\prime}+d\right) / a_{1}^{\prime}\right\rceil-1\right\}$.

If $a_{1}^{\prime} \mid a_{n}^{\prime}$ for every $n \in \mathbb{N}$, then

$$
\left|r_{A}^{-1}(\{0\}) \cap\left[0, a_{n+1}^{\prime}+n d\right)\right| \sim \frac{a_{n+1}^{\prime}}{a_{1}^{\prime}}+n\left\lceil\frac{d}{a_{1}^{\prime}}\right\rceil
$$

$r_{A}(x)$ for arbitrary A

Suppose $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $d \in \mathbb{N}_{0}$.
Then for every $x_{1} \in\left[a_{n}^{\prime}+(n-1) d, a_{n+1}^{\prime}+n d\right)$, we have

$$
x_{2}=x_{1}-\left[a_{n}^{\prime}+(n-1) d\right]<\left(a_{n+1}^{\prime}-a_{n}^{\prime}\right)+d
$$

If $a_{n+1}^{\prime}-a_{n}^{\prime}<a_{2}^{\prime}$, then

$$
x_{3}=x_{2}-a_{1}^{\prime}, \quad x_{4}=x_{2}-2 a_{1}^{\prime}, \quad \ldots, \quad r_{A}\left(x_{1}\right)=x_{2}-\left[R_{A}\left(x_{1}\right)-2\right] a_{1}^{\prime}
$$

Thus, $r_{A}\left(x_{1}\right)=0$ if and only if $x_{1}=\left[a_{n}^{\prime}+(n-1) d\right]+i a_{1}^{\prime}$ for some $i \in\left\{0, \ldots,\left\lceil\left(a_{n+1}^{\prime}-a_{n}^{\prime}+d\right) / a_{1}^{\prime}\right\rceil-1\right\}$.

If $a_{1}^{\prime} \mid a_{n}^{\prime}$ for every $n \in \mathbb{N}$, then

$$
\left|r_{A}^{-1}(\{0\}) \cap\left[0, a_{n+1}^{\prime}+n d\right)\right| \sim \frac{a_{n+1}^{\prime}}{a_{1}^{\prime}}+n\left\lceil\frac{d}{a_{1}^{\prime}}\right\rceil
$$

and so

$$
\mathbf{d} r_{A}^{-1}(\{0\})=\lim _{n \rightarrow \infty} \frac{a_{n+1}^{\prime}+n a_{1}^{\prime}\left\lceil d / a_{1}^{\prime}\right\rceil}{a_{1}^{\prime}\left(a_{n+1}^{\prime}+n d\right)}
$$

$r_{A}(x)$ for arbitrary A

Theorem

Let $d \in \mathbb{N}_{0}$. Let $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty} \subseteq \mathbb{N}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $a_{1}^{\prime} \mid a_{n}^{\prime}$ for every $n \in \mathbb{N}$. If there exists $m \in \mathbb{N}$ such that for every integer $n \geqslant m$ we have $a_{n+1}^{\prime}-a_{n}^{\prime}<a_{2}^{\prime}$, then

$$
\mathbf{d} r_{A}^{-1}(\{0\})=\lim _{n \rightarrow \infty} \frac{a_{n+1}^{\prime}+n a_{1}^{\prime}\left\lceil d / a_{1}^{\prime}\right\rceil}{a_{1}^{\prime}\left(a_{n+1}^{\prime}+n d\right)}
$$

provided the limit exists.

$r_{A}(x)$ for arbitrary A

Theorem

Let $d \in \mathbb{N}_{0}$. Let $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty} \subseteq \mathbb{N}$, where $2 \leqslant a_{1}^{\prime} \leqslant a_{2}^{\prime} \leqslant \cdots$ and $a_{1}^{\prime} \mid a_{n}^{\prime}$ for every $n \in \mathbb{N}$. If there exists $m \in \mathbb{N}$ such that for every integer $n \geqslant m$ we have $a_{n+1}^{\prime}-a_{n}^{\prime}<a_{2}^{\prime}$, then

$$
\mathbf{d} r_{A}^{-1}(\{0\})=\lim _{n \rightarrow \infty} \frac{a_{n+1}^{\prime}+n a_{1}^{\prime}\left\lceil d / a_{1}^{\prime}\right\rceil}{a_{1}^{\prime}\left(a_{n+1}^{\prime}+n d\right)}
$$

provided the limit exists.

Example

- If $A=\left\{a_{1}+(n-1) d\right\}_{n=1}^{\infty} \subseteq \mathbb{N}$ is an arithmetic progression, where $d \in \mathbb{N}$, then

$$
\mathbf{d} r_{A}^{-1}(\{0\})=\frac{1}{d}\left\lceil\frac{d}{a_{1}}\right\rceil .
$$

This density is equal to $1 / a_{1}$ if and only if $a_{1} \mid d$, and is equal to 1 if and only if $a_{1}=1$ or $d=1$.

$r_{A}(x)$ for arbitrary A

Example

- Let $A=\{2\} \cup 7 \mathbb{N}$. Then $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $d=5$ and

$$
a_{1}^{\prime}=2 \quad \text { and } \quad a_{n}^{\prime}=2 n-2 \quad \text { for every } n \geqslant 2 .
$$

In particular, we have $a_{n+1}^{\prime}-a_{n}^{\prime}=2$ for every $n \geqslant 2$, and hence the required integer m does not exist.

$r_{A}(x)$ for arbitrary A

Example

- Let $A=\{2\} \cup 7 \mathbb{N}$. Then $A=\left\{a_{n}^{\prime}+(n-1) d\right\}_{n=1}^{\infty}$, where $d=5$ and

$$
a_{1}^{\prime}=2 \quad \text { and } \quad a_{n}^{\prime}=2 n-2 \quad \text { for every } n \geqslant 2 .
$$

In particular, we have $a_{n+1}^{\prime}-a_{n}^{\prime}=2$ for every $n \geqslant 2$, and hence the required integer m does not exist. As a result, while

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}^{\prime}+n a_{1}^{\prime}\left\lceil d / a_{1}^{\prime}\right\rceil}{a_{1}^{\prime}\left(a_{n+1}^{\prime}+n d\right)}=\frac{1}{2},
$$

we have

$$
r_{A}^{-1}(\{0\})=\{0,2,4,6\} \cup 7 \mathbb{N} \cup(7 \mathbb{N}+2) \cup(7 \mathbb{N}+4) \cup(7 \mathbb{N}+6),
$$

and so

$$
\mathbf{d} r_{A}^{-1}(\{0\})=\frac{4}{7} .
$$

References

- J. Hoseana and Steven, On a sequence of densities generated by the greedy algorithm, São Paulo J. Math. Sci. (2022).
- F. Luca and R. Thangadurai, On an arithmetic function considered by Pillai, J. Théor. Nr. Bordx. 21 (2009), 693-699.
- A. Mukhopadhyay, R. Thangadurai, and G. K. Viswanadham, Unique representation of integers with base A, Arch. Math. 105 (2015), 119128.
- S. S. Pillai, On an arithmetic function concerning primes, Annamalai Univer. J. 1 (1930), 159-167.
- Steven and J. Hoseana, The prime-power map, J. Integer Seq. 24 (2021), 21.2.2.

Thank You!
Jonathan Hoseana j.hoseana@unpar.ac.id sites.google.com/view/jonathanhoseana

