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Basic idea
- Fix a set of positive integers: A={3,8,18,21}.

Try to represent non-negative integers as sums of elements of A
—allowing repetitions— using the greedy algorithm.

50=21+21+38 success
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Basic idea
- Fix a set of positive integers: A={3,8,18,21}.

Try to represent non-negative integers as sums of elements of A
—allowing repetitions— using the greedy algorithm.

50=21+21+38 success
83=21+21+21+18+
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Basic idea
- Fix a set of positive integers: A={3,8,18,21}.

Try to represent non-negative integers as sums of elements of A
—allowing repetitions— using the greedy algorithm.

50=21+21+38 success

83=21+214+21+18+2 fail
)

a non-zero residue

/16



R )

Basic idea
- Fix a set of positive integers: A={3,8,18,21}.

Try to represent non-negative integers as sums of elements of A
—allowing repetitions— using the greedy algorithm.

50=21+21+38 success

83=21+214+21+18+2 fail
)

a non-zero residue

Questions:

/16



R )

Basic idea
- Fix a set of positive integers: A={3,8,18,21}.

Try to represent non-negative integers as sums of elements of A
—allowing repetitions— using the greedy algorithm.

50=21+21+38 success

83=21+214+21+18+2 fail
)

a non-zero residue

Questions: e Asymptotic behaviour of the representation’s length?




R )

Basic idea
- Fix a set of positive integers: A={3,8,18,21}.
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Basic idea
- Fix a set of positive integers: A={3,8,18,21}.

Try to represent non-negative integers as sums of elements of A
—allowing repetitions— using the greedy algorithm.

50=21+21+38 success

83=21+214+21+18+2 fail
)

a non-zero residue

Questions: e Asymptotic behaviour of the representation’s length?
e Density of integers corresponding to each possible residue?
1 T T T 1
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Notation

- » Fix ACN, finite or infinite.

> Define G, : Ng — Ny by
Ga(x) = x —gal(x)

where ga(x) is the largest element of {0,1,
exceeding x.

)
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Notation

- » Fix ACN, finite or infinite.

> Define G, : Ng — Ny by

Ga(x) = x — ga(x),

where ga(x) is the largest element of {0,1,...,min(A) — 1} U A not
exceeding x.

> Given x; € N, generate (x,,)(;i1 via the recursion

Xn+1 = GA (Xn)

for every n € N.
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Notation

- » Fix ACN, finite or infinite.

> Define G, : Ng — Ny by

Ga(x) = x — ga(x),

where ga(x) is the largest element of {0,1,...,min(A) — 1} U A not
exceeding x.

> Given x; € N, generate (x,,)(;il via the recursion
Xn+1 = GA (Xn)

for every n € N.

» Obtain a representation of x;:
x1=ga(xa) + -+ 8a (XRy(a)-1) + ra (xa),
where

. Ra(x1) = min{n € N:x, <min(A)} and ra(x1) = Xr,(x)-
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A prototypical special case
A=P

oo
- ’% (primes, including 1 “for convenience”)

S. S. Pillai (1930)
https://upload.wikimedia.org/wikipedia
/commons/0/05/S.S._Pillai.jpg
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A prototypical special case
A=P

(primes, including 1 “for convenience”)

S. S. Pillai (1930) A
https://upload.wikimedia.org/wikipedia
/commons/0/05/S.S._Pillai.jpg
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Fact [Pillai, 1930]

We have limsup Rp(x) = oo.

X—>00
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A prototypical special case
A=P

(primes, including 1 “for convenience”)

S. S. Pillai (1930)
https://upload.wikimedia.org/wikipedia
/commons/0/05/S.S._Pillai.jpg

1000 2000 3000 4000

Fact [Pillai, 1930]

|

We have limsup Rp(x) = oo.

X—r00

Proof

Given x € N. Choose consecutive p;,pp € P with pp — pp > x + L.
( IT p+2,..., T1 p+x+1a|lcomposite.)
p<x+1 p<x+1

Then Gp (p1 + x) = x, and so Rp (p1 + x) = Rp(x) + 1.
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A prototypical special case

Let 7 := min Ry '({k}) be the smallest initial condition with representa-
tion length k > 2.
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A prototypical special case
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B

Let 7 := min Ry '({k}) be the smallest initial condition with representa-
tion length k > 2. Then

m=1=1+0,
m=4=3+1+0,

M =27=23+3+1+0,

M5 = 1354 =13274+23+34+140,

16 = 401429925999155061
= 401429925999153707 + 1327 + 23+ 3 + 1 + 0.




A prototypical special case

R )
B

Let 7 := min Ry '({k}) be the smallest initial condition with representa-
tion length k > 2. Then

m=1=1+40,

3 =4=3+1+0,
m=21=23+3+1+0,

s = 1354 = 1327 + 23+ 3+ 1 +0,

16 = 401429925999155061
= 401429925999153707 + 1327 + 23+ 3 + 1 + 0.

For every k > 2 we have Gp (1x+1) = 7.
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A prototypical special case

R )
B

Let 7 := min Ry '({k}) be the smallest initial condition with representa-
tion length k > 2. Then

m=1=1+0,
m=4=3+1+0,

Na =27=23+3+1+0,

ns = 1354 = 1327 +23+3 +1+0,

16 = 401429925999155061
= 401429925999153707 + 1327 + 23+ 3 + 1 + 0.

For every k > 2 we have Gp (1x+1) = 7.

Thus for every k > 2 we have nx11 = 1k + p1, where (p1, p2) is the first
pair of consecutive primes with p, — p; > nx + 1.
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A prototypical special case

Bertrand's postulate [Chebyshev, 1852]

For every integer x > 2 there exists p € P such that x < p < 2x.

5/16



A prototypical special case

Bertrand's postulate [Chebyshev, 1852]

For every integer x > 2 there exists p € P such that x < p < 2x.

Consequence

For every x € Ny we have

XRe(x)—2 _ XRp(x)—3 X1 . X
1 <XRe(p)-1 < 2 < 22 S s JRe(x)—2 — JRe(x)—2"

Thus,
Rp(x) < Inx.
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A prototypical special case

An improvement of Bertrand's postulate [Hoheisel, 1930]

There exist § € (0,1) and Xy € N such that for every x > Xj the interval
[x — xg.,x} contains a prime.
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A prototypical special case

An improvement of Bertrand's postulate [Hoheisel, 1930]

There exist § € (0,1) and Xy € N such that for every x > Xj the interval

[X — XH,X} contains a prlme.

Consequence [Luca & Thangadurai, 2009]
There exist 6 € (0,1) and X} € N such that for every x >

X0 we have

! 0 62 prp()—1 9P -1
XO g XKP(x) g XKP(X)—I < XKH»(X)—Z < e g X1 = x ’

where Kp(x) := max{k € N: x, > Xg}. Thus,

Rp(x) < Inlnx.
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Facts
We have

lim sup Rp+ (x) = 0o and
X—r 00

Rp+(x) < Inlnx.
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A modest variant

- A = [JP* (prime powers including 1)

Facts
We have

lim sup Rp+ (x) = 0o and Rp+(x) < Inlnx.

X—r 00

Let & := min Ry ({k}) be the smallest initial condition with representa-
tion length kK > 2. Then

&=1=1+0,

&=6=5+1+0,

€4 =95=89+5+1+0,

& = 360748 = 360653 +89 +5+ 1 + 0.




R )

A modest variant

- A = [JP* (prime powers including 1)

Facts
We have

lim sup Rp+ (x) = 0o and Rp+(x) < Inlnx.

X—r 00

Let & := min Ry ({k}) be the smallest initial condition with representa-
tion length kK > 2. Then

&=1=1+0,

&=6=5+1+0,

€4 =95=89+5+1+0,

& = 360748 = 360653 +89 +5+ 1 + 0.

For every k > 2 we have k11 = & + g1, where (g1, g2) is the first pair of
consecutive prime powers with g — g1 > & + 1.
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Facts [Mukhopadhyay, et al., 2015]
If |A] < oo, then limsup Ra(x) =00 and Ra(x) < x .

X—r 00

If |Al =00, say A={a,} —; with a; < a <---, then

> limsup Ra(x) = oo if and only if limsup(a, — an—1) = o0 ;
X—>00 n—o00

there exist Xp € N and f : [0, 00) — [0, 00) such that for

every x > Xo we have [x — f(x),x] N A # &, then

> there exist Xy € N such that for every x > X, we have
Ga(x) < f(x),

» there exist X§ € N such that for every x > Xj we have
X§ < FRA71(x), where Ka(x) := max{k € N: x, > X}}.



Ra(x) for arbitrary A

Facts [Mukhopadhyay, et al., 2015]
If |A] < oo, then limsup Ra(x) =00 and Ra(x) < x .

X—r 00

If |Al =00, say A={a,} —; with a; < a <---, then

> limsup Ra(x) = oo if and only if limsup(a, — an—1) = o0 ;
X—>00 n—o00

there exist Xp € N and f : [0, 00) — [0, 00) such that for

every x > Xo we have [x — f(x),x] N A # &, then

> there exist Xy € N such that for every x > X, we have
Ga(x) < f(x),

» there exist X§ € N such that for every x > Xj we have
X§ < FRA71(x), where Ka(x) := max{k € N: x, > X}}.

Two notable special cases f(x) =dx, § € (0,1) = Ra(x) < Inx
f(x) =x% 0 €(0,1) = Ra(x) < Inlnx
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Ra(x) for arbitrary A

Applications [Mukhopadhyay, et al., 2015]

> Let A be the set of all primes of the form m? + n?> 4+ 1 where m,n € N
and gcd(m, n) = 1. One can take f(x) = x'%/121 [Wu, 1998]. Thus,

Ra(x) < Inln x.
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Applications [Mukhopadhyay, et al., 2015]

> Let A be the set of all primes of the form m? + n?> 4+ 1 where m,n € N
and gcd(m, n) = 1. One can take f(x) = x'%/121 [Wu, 1998]. Thus,

Ra(x) < Inln x.

> Let A be the set of all square-free numbers: those which are divisible
by no square other than 1. One can take f(x) = x'/° In x [Filaseta and
Trifonov, 1992]. Thus,

Ra(x) < Inln x.
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Ra(x) for arbitrary A

Applications [Mukhopadhyay, et al., 2015]

> Let A be the set of all primes of the form m? + n?> 4+ 1 where m,n € N
and gcd(m, n) = 1. One can take f(x) = x'%/121 [Wu, 1998]. Thus,

Ra(x) < Inln x.

> Let A be the set of all square-free numbers: those which are divisible
by no square other than 1. One can take f(x) = x'/° In x [Filaseta and
Trifonov, 1992]. Thus,

Ra(x) < Inln x.

» Let A= Ag be the set of all B-free numbers: those which are divisible
by no element of a fixed set B = {by},-, satisfying > =, 1/bx < 0o
and ged (b;, b;) = 1 for all i # j. One can take f(x) = x33/7 [Zhai,
2000]. Thus,

Ra(x) < Inlnx.
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Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as
—il
N o,
drA—l({t}) — |lim |rA ({ }) [ X]|

X—00 X—|—1

if the limit exists.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =0 we have

ra ({0}) N[0, x] = {0},
({1 N[0 x] = {3,
ra ({21 N0,x] = {}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =1 we have

ra ({0}) N[0, x] = {0},
ra ({1 N[0, x] = {1},
ra ({22 N0,x] = {}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =2 we have

ra ({0}) N[0, x] = {0},
ra ({1 N[0, x] = {1},
ra ({21) N0, x] = {2}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =3 we have

ra'({0}) N[0, x] = {0,3},
ra ({1 N[0, x] = {1},
rat({23) N [0,x] = {2}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =4 we have

ra'({0}) N[0, x] = {0,3},
ra ({1 N0, x] = {1,4},
rat({21) N[0, x] = {2}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =5 we have

ra'({0}) N[0, x] = {0,3},
ra ({1 N0, x] = {1,4},
ra'({2}) N[0, x] = {2,5}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =6 we have

ra ({0})N[0,x] = {0,3,6},
(1) N[0.x] = {1,4},
ra’({21) N[0,x] = {2,5}.

. 10/16
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =7 we have

ra ({0})N[0,x] = {0,3,6},
({1 N[0, = {1,4,7},
ra’({21) N[0,x] = {2,5}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

Lt 0o
x—00 x+1

dry}({1}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =8 we have
rat({0}) N [0,x] = {0,3,6,8},
(1) N[0, x] = {1,4,7},
ra ({21 N0, x] = {2,5}.
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R )

ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

Lt 0o
x—00 x+1

dry}({1}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =9 we have
rat({0}) N [0,x] = {0,3,6,8},
({1 n[o,x] = {1,4,7,9},
ra ({21 N0, x] = {2,5}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

R ctaptal %
X—00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =10 we have
rat({0}) N[0, x] = {0,3,6,8},

ra ({11 N 0.x] = {1,4,7,9},
rat({2}) N[0, x] = {2,5,10}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

R ctaptal %
X—00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =11 we have
ra({03) N[0, x] = {0,3,6,8, 11},

ra ({11 N0.x] = {1,4,7,9},
rat({2}) N[0, x] = {2,5,10}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =12 we have

rat({0}) N[0, x] = {0,3,6,8,11},
({1 N0, x] = {1,4,7,9,12},
rat({2}) N[0, x] = {2,5,10}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =13 we have

rat({0}) N[0, x] = {0,3,6,8,11},
({1 N0, x] = {1,4,7,9,12},
ra ({21 N[0, x] = {2,5,10,13}.
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R )

ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x = 14 we have

rat({0}) N [0,x] = {0,3,6,8,11,14},
({1 N0, x] = {1,4,7,9,12},
ra ({21 N[0, x] = {2,5,10,13}.

. 10/16
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
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Suppose A ={3,8,18,21} . For x =15 we have
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For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =16 we have

rat({0}) N [0,x] = {0,3,6,8,11, 14,16},
({1} N 0,x] = {1,4,7,9,12,15},
ra ({21 N[0, x] = {2,5,10,13}.
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({11 N 0,x] = {1,4,7,9,12,15,17},
ra ({21 N[0, x] = {2,5,10,13}.

. 10/16



R )

ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as
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dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x = 18 we have

rat({0}) N [0,x] = {0,3,6,8,11,14, 16,18},
({1 N 0,x] = {1,4,7,9,12,15,17},
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Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =19 we have

rat({0}) N[0, x] = {0,3,6,8,11, 14, 16,18},
ra ({1 N [0,x] = {1,4,7,9,12,15,17,19},
rat({2}) N[0, x] = {2,5,10,13}.
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Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

e n oA
X—$00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =20 we have

rat({0}) N[0, x] = {0,3,6,8,11, 14, 16,18},
({11 N [0,x] = {1,4,7,9,12,15,17,19},
({21 N[0, x] = {2,5,10,13,20}.
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ra(x) for arbitrary A

Write A = {a,}"_, with N € NU {oo} and a, < an41 for 1 < n < N.
For every t € {0,...,a; — 1}, define the density of r; '({t}) as

Lt o)
Xx—»00 x+1

dry'({t}) =

if the limit exists.

lllustration

Suppose A ={3,8,18,21} . For x =20 we have

rat({0}) N [0,x] = {0,3,6,8,11,14, 16,18},
({1 N[0,x] = {1,4,7,9,12,15,17,19},
({21 N[0, x] = {2,5,10,13,20}.

Fact

For every x € Ny we have
o) N[O, X]| = - = | ({ar — 1}) N [0,x]].
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ra(x) for arbitrary A

If AC a;N, then for every t € {0,...,a1 —1} and x € Ny we have
ra(x) = xmod ay, and so

|t ({t) N [0,x]| = {y € No : ymod ay = t} N [0,x]| = {Xa_—ltJ 1
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ra(x) for arbitrary A

If AC aiN, then for every t € {0,...,a; — 1} and x € Ny we have
ra(x) = xmod ay, and so

|rA_1({t})ﬂ[0,x]| =|{yeNg:ymoda; =t}NJ[0,x]| = { 3_1 J + 1.
It follows that for every x € Ny we have

|~ ({a1 — 1}) N[0, ]| > [(xt1)/a1] xooo 1
x+1 T ox+l o

and
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x+1 Sx/ar]ar+1 a
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ra(x) for arbitrary A

ra(x) = xmod ay, and so

It follows that for every x € Ny we have

=

x+1 x+1 a

and
[r=1({0}) N [0, x]] ¢ X/a]+l xoee 1
x+1 Sx/ar]ar+1 a

If |[Al<oc and AL a1N

|~ ({a1 — 1}) N[0, ]| > [(xt1)/a1] xooo 1

If AC aiN, then for every t € {0,...,a; — 1} and x € Ny we have

_J+1
1

|r;1({t})ﬂ[0,x]|:|{y€No:ymod31 t} N o, x]|—{ p
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ra(x) for arbitrary A

If AC aiN, then for every t € {0,...,a; — 1} and x € Ny we have
ra(x) = xmod ay, and so

|t ({t}) N [0,x]| = {y € No : ymod a; = t} N[0, x]| = { 3_1 J + 1.
It follows that for every x € Ny we have

|~ ({a1 — 1}) N[0, ]| > [(xt1)/a1] xooo 1
x+1 T ox+l o

and
[r=1({0}) N [0, x]] ¢ X/a]+l xoee 1
x+1 Sx/ar]ar+1 a

If |[Al<oo and AL a;N then for every i € N,
|ra ({0 N[(7i — 1)a, iay — 1]|
|rA ({ar = 1) N[(i — 1)an, iany — 1]| >
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If AC aiN, then for every t € {0,...,a; — 1} and x € Ny we have
ra(x) = xmod ay, and so

|t ({t}) N [0,x]| = {y € No : ymod a; = t} N[0, x]| = { 3_1 J + 1.
It follows that for every x € Ny we have

|r~t ({a1 — 1}) N[0, x]| > [(xt1)/a1] xooo 1
x+1 T ox+l o

and
[r=1({0}) N [0, x]] ¢ X/a]+l xoee 1
x+1 Sx/ar]ar+1 a

If |[Al<oo and AL a;N then for every i € N,
rat({0}) N [(i — 1)aw, ian — 1]|

|rA ({ar = 1) N[(i — 1)an, iany — 1]| >
and so

.} (o) N[0, iay — 1| — [rx ' ({ar — 1}) N[0, iay — 1]| > i
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ra(x) for arbitrary A

. — -1 . .
If A C aN, then the density sequence (dr,*({t}) ‘:I:O exists and is con-
stant. The converse also holds in the case |A| < cc.
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Examples

> If A={6n—3}"2, C 3N, then the density sequence is constant.
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If AC a1N, then the density sequence (dr, 1({t}))i1:0 exists and is con-
stant. The converse also holds in the case |A| < cc.

Examples

> If A={6n—3}"2, C 3N, then the density sequence is constant.

> If A={6n—3}2,UB, where @ # B C {6n—4}22,U{6n—5},
and |BN[0,x]| = o(x), then the density sequence remains constant
although A < 3N.
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ra(x) for arbitrary A

. — -1 . .
If AC a1N, then the density sequence (dr, 1({t}))i1:0 exists and is con-
stant. The converse also holds in the case |A| < cc.

Examples

> If A={6n—3}"2, C 3N, then the density sequence is constant.

> If A={6n—3}2,UB, where @ # B C {6n—4}22,U{6n—5},
and |BN[0,x]| = o(x), then the density sequence remains constant
although A < 3N.

> If A={6n—3}52,UB, where B = {4}, then

{0,4,8} U(6BN—-3)U(6N+ 1)U (6N +6), if t =0;
rat({t}) = < {1,5} U (6N + 4) U (6N + 8), if t =1;

{2,6} U (6N +5), if t =2,
and so the density sequence is not constant.
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Suppose A= {a,+ (n—1)d},, where2 <a;<a,<- - and d € Ny.
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Suppose A= {a,+ (n—1)d},, where2 <a;<a,<- - and d € Ny.

Then for every x; € [a], + (n — 1)d, a,,,; + nd), we have
xp =x1 — [a, + (n— 1)d] < (a},,, — a,) + d.
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Suppose A ={a,+ (n—1)d}~,, where2<aj<a)<---andd € N.

n=1"'

Then for every x; € [a], + (n — 1)d, a,,,; + nd), we have
xp =x1 — [a, + (n— 1)d] < (a},,, — a,) + d.

If &), —a), <aj then

X3:X2—a/1, X4:X2—2all, R rA(xl):xz—[RA(xl)—2]a’1.
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If &), —a), <aj then

X3:X2—a/1, X4:X2—2all, R rA(xl):xz—[RA(xl)—2]a’1.

Thus, ra(x1) = 0 if and only if x; = [a}, + (n— 1)d] + ia} for some
i€{0,...,[(ahy — a, +d) /a] —1}.

13/16



ra(x) for arbitrary A
Suppose A= {a,+ (n—1)d},, where2 <a;<a,<- - and d € Ny.
Then for every x; € [a], + (n — 1)d, a,,,; + nd), we have
xp =x1 — [a, + (n— 1)d] < (a},,, — a,) + d.
If &), —a), <aj then

X3:X2—a/1, X4:X2—2all, R rA(xl):xz—[RA(xl)—2]a’1.

Thus, ra(x1) = 0 if and only if x; = [a}, + (n— 1)d] + ia} for some
i€{0,...,[(ahy — a, +d) /a] —1}.
If &) | a), for every n € N, then

/
P ({0}) N [0, &y + nd)| N%HE’]
1 1
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ra(x) for arbitrary A
Suppose A= {a,+ (n—1)d},, where2 <a;<a,<- - and d € Ny.
Then for every x; € [a], + (n — 1)d, a,,,; + nd), we have

xp =x1 — [a, + (n— 1)d] < (a},,, — a,) + d.

If &), —a), <aj then

X3:X2—a/1, X4:X2—2all, R rA(xl):xz—[RA(xl)—2]a’1.
Thus, ra(x1) = 0 if and only if x; = [a}, + (n— 1)d] + ia} for some
i€{0,...,[(ahy — a, +d) /a] —1}.

If &) | a), for every n € N, then

/ ani1 d
| {0} [O’an+1+nd)|Na_,1+n a—i ,
and so

dro ({0}) ;7+1 + na?l [d/a{l]
A n~>oo al ( n+1 + nd)

7 5
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ra(x) for arbitrary A

LetdeNO Let A={a,+(n—1)d} -, CN, where2 < af <a) <
and aj | a), for every n € N. If there exists m € N such that for every
integer n > m we have aj,,; — a;, < a5, then

3ns1 + na [d/ay]
n—>oo a, (a1 + nd)

R )
B

dry'({0}) =

provided the limit exists.
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ra(x) for arbitrary A

LetdeNO Let A={a,+(n—1)d} -, CN, where2 < af <a) <
and aj | a), for every n € N. If there exists m € N such that for every
integer n > m we have aj,,; — a;, < a5, then

3ns1 + na [d/ay]
n—>oo a, (a1 + nd)

dry'({0}) =

provided the limit exists.

Example

» If A= {a+(n—1)d},2; C Nis an arithmetic progression, where
d € N, then

1|d
dri'({op) == | —|.
ROIEEE
This density is equal to 1/a; if and only if a; | d, and is equal to 1 if
andonly if ay =1ord =1.
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ra(x) for arbitrary A

» Let A={2}U7N. Then A= {a),+ (n—1)d},~,, where d =5 and

R )
B

a =2 and a,=2n—2 forevery n>2.

In particular, we have aj,, ; — a;, = 2 for every n > 2, and hence the
required integer m does not exist.
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ra(x) for arbitrary A

» Let A={2}U7N. Then A= {a),+ (n—1)d},~,, where d =5 and

R )
B

a =2 and a,=2n—2 forevery n>2.

In particular, we have aj,, ; — a;, = 2 for every n > 2, and hence the
required integer m does not exist. As a result, while
a1 tnafd/a] 1

I _1
00 a (a1 + nd) 2’

we have
rat({0}) = {0,2,4,6} UTN U (7N + 2) U (7N + 4) U (7N + 6),

and so
_ 4
dry ({0}) = 7.
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