

Department of Mathematics Parahyangan Catholic University Indonesia

The dynamical system generated by the greedy algorithm Jonathan Hoseana Joint work with Steven

Fix a set of positive integers:

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 =

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 +

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 +

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 =

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 +

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 +

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 21

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 18 +

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 18 + 2 fail \uparrow a non-zero residue

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 18 + 2 fail a non-zero residue

Questions:

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 18 + 2 fail a non-zero residue

Questions: • Asymptotic behaviour of the representation's length?

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 18 + 2 fail \uparrow a non-zero residue

Questions: • Asymptotic behaviour of the representation's length?

• Density of integers corresponding to each possible residue?

Fix a set of positive integers: $A = \{3, 8, 18, 21\}.$

Try to represent non-negative integers as sums of elements of A —allowing repetitions— using the greedy algorithm.

50 = 21 + 21 + 8 success 83 = 21 + 21 + 21 + 18 + 2 fail \uparrow a non-zero residue

Questions: • Asymptotic behaviour of the representation's length?

• Density of integers corresponding to each possible residue?

Notation

- ▶ Fix $A \subseteq \mathbb{N}$, finite or infinite.
- \blacktriangleright Define $\boldsymbol{G}_{\mathcal{A}}:\mathbb{N}_{0}\rightarrow\mathbb{N}_{0}$ by

$$\mathbf{G}_{A}(x) = x - \mathbf{g}_{A}(x),$$

where $\mathbf{g}_A(x)$ is the largest element of $\{0, 1, \dots, \min(A) - 1\} \cup A$ not exceeding x.

Notation

- Fix $A \subseteq \mathbb{N}$, finite or infinite.
- \blacktriangleright Define $\boldsymbol{G}_{\mathcal{A}}:\mathbb{N}_{0}\rightarrow\mathbb{N}_{0}$ by

$$\mathbf{G}_{A}(x) = x - \mathbf{g}_{A}(x),$$

where $\mathbf{g}_A(x)$ is the largest element of $\{0, 1, \dots, \min(A) - 1\} \cup A$ not exceeding x.

• Given $x_1 \in \mathbb{N}$, generate $(x_n)_{n=1}^{\infty}$ via the recursion

 $x_{n+1}=\mathbf{G}_{A}\left(x_{n}\right)$

for every $n \in \mathbb{N}$.

Notation

- Fix $A \subseteq \mathbb{N}$, finite or infinite.
- \blacktriangleright Define $\boldsymbol{G}_{\mathcal{A}}:\mathbb{N}_{0}\rightarrow\mathbb{N}_{0}$ by

$$\mathbf{G}_{A}(x) = x - \mathbf{g}_{A}(x),$$

where $\mathbf{g}_A(x)$ is the largest element of $\{0, 1, \dots, \min(A) - 1\} \cup A$ not exceeding x.

• Given $x_1 \in \mathbb{N}$, generate $(x_n)_{n=1}^{\infty}$ via the recursion

 $x_{n+1}=\mathbf{G}_{A}\left(x_{n}\right)$

for every $n \in \mathbb{N}$.

Obtain a representation of x₁:

$$x_{1} = \mathbf{g}_{A}(x_{1}) + \cdots + \mathbf{g}_{A}(x_{R_{A}(x_{1})-1}) + r_{A}(x_{1}),$$

where

 $R_A(x_1) = \min\{n \in \mathbb{N} : x_n < \min(A)\}$ and $r_A(x_1) = x_{R_A(x_1)}$.

 $A = \mathbb{P}$

(primes, including 1 "for convenience")

S. S. Pillai (1930) https://upload.wikimedia.org/wikipedia /commons/0/05/S.S._Pillai.jpg

 $A = \mathbb{P}$

S. S. Pillai (1930) https://upload.wikimedia.org/wikipedia

/commons/0/05/S.S._Pillai.jpg

(primes, including 1 "for convenience")

Fact [Pillai, 1930]

We have $\limsup_{x\to\infty} R_{\mathbb{P}}(x) = \infty$.

 $A = \mathbb{P}$

Fact [Pillai, 1930]

We have $\limsup_{x \to \infty} R_{\mathbb{P}}(x) = \infty$. Proof Given $x \in \mathbb{N}$. Choose consecutive p_1, p_2

Given $x \in \mathbb{N}$. Choose consecutive $p_1, p_2 \in \mathbb{P}$ with $p_2 - p_1 \ge x + 1$. $\left(\prod_{p \le x+1} p + 2, \dots, \prod_{p \le x+1} p + x + 1 \text{ all composite.}\right)$ Then $\mathbf{G}_{\mathbb{P}}(p_1 + x) = x$, and so $R_{\mathbb{P}}(p_1 + x) = R_{\mathbb{P}}(x) + 1$.

Let $\eta_k := \min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$.

Let $\eta_k := \min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$. Then

 $\begin{aligned} \eta_2 &= 1 = 1 + 0, \\ \eta_3 &= 4 = 3 + 1 + 0, \\ \eta_4 &= 27 = 23 + 3 + 1 + 0, \\ \eta_5 &= 1354 = 1327 + 23 + 3 + 1 + 0, \\ \eta_6 &= 401429925999155061 \\ &= 401429925999153707 + 1327 + 23 + 3 + 1 + 0. \end{aligned}$

Let $\eta_k := \min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$. Then

$$\begin{split} \eta_2 &= 1 = 1 + 0, \\ \eta_3 &= 4 = 3 + 1 + 0, \\ \eta_4 &= 27 = 23 + 3 + 1 + 0, \\ \eta_5 &= 1354 = 1327 + 23 + 3 + 1 + 0, \\ \eta_6 &= 401429925999155061 \\ &= 401429925999153707 + 1327 + 23 + 3 + 1 + 0. \end{split}$$

Fact

For every $k \ge 2$ we have $\mathbf{G}_{\mathbb{P}}(\eta_{k+1}) = \eta_k$.

Let $\eta_k := \min R_{\mathbb{P}}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$. Then

$$\begin{split} \eta_2 &= 1 = 1 + 0, \\ \eta_3 &= 4 = 3 + 1 + 0, \\ \eta_4 &= 27 = 23 + 3 + 1 + 0, \\ \eta_5 &= 1354 = 1327 + 23 + 3 + 1 + 0, \\ \eta_6 &= 401429925999155061 \\ &= 401429925999153707 + 1327 + 23 + 3 + 1 + 0. \end{split}$$

Fact

For every $k \ge 2$ we have $\mathbf{G}_{\mathbb{P}}(\eta_{k+1}) = \eta_k$.

Thus for every $k \ge 2$ we have $\eta_{k+1} = \eta_k + p_1$, where (p_1, p_2) is the first pair of consecutive primes with $p_2 - p_1 \ge \eta_k + 1$.

Bertrand's postulate [Chebyshev, 1852]

For every integer $x \ge 2$ there exists $p \in \mathbb{P}$ such that x .

Bertrand's postulate [Chebyshev, 1852]

For every integer $x \ge 2$ there exists $p \in \mathbb{P}$ such that x .

Consequence

For every $x \in \mathbb{N}_0$ we have

$$1 \leqslant x_{R_{\mathbb{P}}(x)-1} \leqslant \frac{x_{R_{\mathbb{P}}(x)-2}}{2} \leqslant \frac{x_{R_{\mathbb{P}}(x)-3}}{2^2} \leqslant \dots \leqslant \frac{x_1}{2^{R_{\mathbb{P}}(x)-2}} = \frac{x}{2^{R_{\mathbb{P}}(x)-2}}.$$

Thus,
$$R_{\mathbb{P}}(x) \ll \ln x$$

An improvement of Bertrand's postulate [Hoheisel, 1930]

There exist $\theta \in (0,1)$ and $X_0 \in \mathbb{N}$ such that for every $x \ge X_0$ the interval $[x - x^{\theta}, x]$ contains a prime.

An improvement of Bertrand's postulate [Hoheisel, 1930]

There exist $\theta \in (0, 1)$ and $X_0 \in \mathbb{N}$ such that for every $x \ge X_0$ the interval $[x - x^{\theta}, x]$ contains a prime.

Consequence [Luca & Thangadurai, 2009]

There exist $\theta \in (0,1)$ and $X'_0 \in \mathbb{N}$ such that for every $x \ge X'_0$ we have

$$X_0' \leqslant x_{\mathcal{K}_{\mathbb{P}}(x)} \leqslant x_{\mathcal{K}_{\mathbb{P}}(x)-1}^{\theta} \leqslant x_{\mathcal{K}_{\mathbb{P}}(x)-2}^{\theta^2} \leqslant \cdots \leqslant x_1^{\theta^{\mathcal{K}_{\mathbb{P}}(x)-1}} = x^{\theta^{\mathcal{K}_{\mathbb{P}}(x)-1}}$$

where $K_{\mathbb{P}}(x) := \max \{k \in \mathbb{N} : x_k \ge X'_0\}$. Thus,

 $R_{\mathbb{P}}(x) \ll \ln \ln x.$

 $A = \mathbb{P}^*$ (prime powers including 1)

Facts

We have

$$\limsup_{x \to \infty} R_{\mathbb{P}^*}(x) = \infty \qquad \text{and} \qquad R_{\mathbb{P}^*}(x) \ll \ln \ln x.$$

 $A = \mathbb{P}^*$ (prime powers including 1)

Facts

We have

 $\limsup_{x\to\infty} R_{\mathbb{P}^*}(x) = \infty \qquad \text{and} \qquad R_{\mathbb{P}^*}(x) \ll \ln \ln x.$

Let $\xi_k := \min R_{\mathbb{P}^*}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$.

 $A = \mathbb{P}^*$ (prime powers including 1)

Facts

We have

 $\limsup_{x \to \infty} R_{\mathbb{P}^*}(x) = \infty \qquad \text{and} \qquad R_{\mathbb{P}^*}(x) \ll \ln \ln x.$

Let $\xi_k := \min R_{\mathbb{P}^*}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$. Then

$$\xi_2 = 1 = 1 + 0,$$

$$\xi_3 = 6 = 5 + 1 + 0,$$

$$\xi_4 = 95 = 89 + 5 + 1 + 0,$$

$$\xi_5 = 360748 = 360653 + 89 + 5 + 1 + 0.$$

 $A = \mathbb{P}^*$ (prime powers including 1)

Facts

We have

 $\limsup_{x \to \infty} R_{\mathbb{P}^*}(x) = \infty \qquad \text{and} \qquad R_{\mathbb{P}^*}(x) \ll \ln \ln x.$

Let $\xi_k := \min R_{\mathbb{P}^*}^{-1}(\{k\})$ be the smallest initial condition with representation length $k \ge 2$. Then

$$\begin{aligned} \xi_2 &= 1 = 1 + 0, \\ \xi_3 &= 6 = 5 + 1 + 0, \\ \xi_4 &= 95 = 89 + 5 + 1 + 0, \\ \xi_5 &= 360748 = 360653 + 89 + 5 + 1 + 0 \end{aligned}$$

For every $k \ge 2$ we have $\xi_{k+1} = \xi_k + q_1$, where (q_1, q_2) is the first pair of consecutive prime powers with $q_2 - q_1 \ge \xi_k + 1$.

Facts [Mukhopadhyay, et al., 2015]

Facts [Mukhopadhyay, et al., 2015]

If $|A| < \infty$, then $\limsup_{x \to \infty} R_A(x) = \infty$ and $R_A(x) \ll x$.

Facts [Mukhopadhyay, et al., 2015]

If $|A| < \infty$, then $\limsup_{x \to \infty} R_A(x) = \infty$ and $R_A(x) \ll x$.

If $|A| = \infty$, say $A = \{a_n\}_{n=1}^{\infty}$ with $a_1 < a_2 < \cdots$, then

▶ $\limsup_{x\to\infty} R_A(x) = \infty$ if and only if $\limsup_{n\to\infty} (a_n - a_{n-1}) = \infty$;

Facts [Mukhopadhyay, et al., 2015]

If $|A| < \infty$, then $\limsup_{x \to \infty} R_A(x) = \infty$ and $R_A(x) \ll x$.

If $|A| = \infty$, say $A = \{a_n\}_{n=1}^{\infty}$ with $a_1 < a_2 < \cdots$, then

- ▶ $\limsup_{x \to \infty} R_A(x) = \infty$ if and only if $\limsup_{n \to \infty} (a_n a_{n-1}) = \infty$;
- ▶ if there exist $X_0 \in \mathbb{N}$ and $f : [0, \infty) \to [0, \infty)$ such that for every $x \ge X_0$ we have $[x f(x), x] \cap A \neq \emptyset$, then
 - ▶ there exist $X_0 \in \mathbb{N}$ such that for every $x \ge X_0$ we have $\mathbf{G}_A(x) \leq f(x)$,
 - ▶ there exist $X'_0 \in \mathbb{N}$ such that for every $x \ge X'_0$ we have $X'_0 \leqslant f^{K_A(x)-1}(x)$, where $K_A(x) := \max \{k \in \mathbb{N} : x_k \ge X'_0\}$.

Facts [Mukhopadhyay, et al., 2015]

If $|A| < \infty$, then $\limsup_{x \to \infty} R_A(x) = \infty$ and $R_A(x) \ll x$.

If $|A| = \infty$, say $A = \{a_n\}_{n=1}^{\infty}$ with $a_1 < a_2 < \cdots$, then

- ▶ $\limsup_{x \to \infty} R_A(x) = \infty$ if and only if $\limsup_{n \to \infty} (a_n a_{n-1}) = \infty$;
- ▶ if there exist $X_0 \in \mathbb{N}$ and $f : [0, \infty) \to [0, \infty)$ such that for every $x \ge X_0$ we have $[x f(x), x] \cap A \neq \emptyset$, then
 - ▶ there exist $X_0 \in \mathbb{N}$ such that for every $x \ge X_0$ we have $\mathbf{G}_A(x) \leq f(x)$,
 - ▶ there exist $X'_0 \in \mathbb{N}$ such that for every $x \ge X'_0$ we have $X'_0 \leqslant f^{K_A(x)-1}(x)$, where $K_A(x) := \max \{k \in \mathbb{N} : x_k \ge X'_0\}$.

Two notable special cases $f(x) = \delta x, \ \delta \in (0, 1) \Rightarrow R_A(x) \ll \ln x$ $f(x) = x^{\theta}, \ \theta \in (0, 1) \Rightarrow R_A(x) \ll \ln \ln x$

Applications [Mukhopadhyay, et al., 2015]

▶ Let A be the set of all primes of the form $m^2 + n^2 + 1$ where $m, n \in \mathbb{N}$ and gcd(m, n) = 1. One can take $f(x) = x^{115/121}$ [Wu, 1998]. Thus,

 $R_A(x) \ll \ln \ln x.$

Applications [Mukhopadhyay, et al., 2015]

▶ Let A be the set of all primes of the form $m^2 + n^2 + 1$ where $m, n \in \mathbb{N}$ and gcd(m, n) = 1. One can take $f(x) = x^{115/121}$ [Wu, 1998]. Thus,

$R_A(x) \ll \ln \ln x.$

▶ Let A be the set of all square-free numbers: those which are divisible by no square other than 1. One can take f(x) = x^{1/5} ln x [Filaseta and Trifonov, 1992]. Thus,

 $R_A(x) \ll \ln \ln x.$

Applications [Mukhopadhyay, et al., 2015]

▶ Let A be the set of all primes of the form $m^2 + n^2 + 1$ where $m, n \in \mathbb{N}$ and gcd(m, n) = 1. One can take $f(x) = x^{115/121}$ [Wu, 1998]. Thus,

$R_A(x) \ll \ln \ln x.$

▶ Let A be the set of all square-free numbers: those which are divisible by no square other than 1. One can take f(x) = x^{1/5} ln x [Filaseta and Trifonov, 1992]. Thus,

$R_A(x) \ll \ln \ln x.$

• Let $A = A_{\mathcal{B}}$ be the set of all \mathcal{B} -free numbers: those which are divisible by no element of a fixed set $\mathcal{B} = \{b_k\}_{k=1}^{\infty}$ satisfying $\sum_{k=1}^{\infty} 1/b_k < \infty$ and gcd $(b_i, b_j) = 1$ for all $i \neq j$. One can take $f(x) = x^{33/79}$ [Zhai, 2000]. Thus,

$$R_A(x) \ll \ln \ln x.$$

$r_A(x)$ for arbitrary AWrite $A = \{a_n\}_{n=1}^N$ with $N \in \mathbb{N} \cup \{\infty\}$ and $a_n < a_{n+1}$ for $1 \leq n < N$.

$\begin{aligned} r_A(x) \text{ for arbitrary } A \\ \text{Write } A &= \{a_n\}_{n=1}^N \text{ with } N \in \mathbb{N} \cup \{\infty\} \text{ and } a_n < a_{n+1} \text{ for } 1 \leq n < N. \\ \text{For every } t \in \{0, \dots, a_1 - 1\}, \text{ define the density of } r_A^{-1}(\{t\}) \text{ as} \\ \mathbf{d} r_A^{-1}(\{t\}) &:= \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\}) \cap [0, x]|}{x + 1} \end{aligned}$

if the limit exists.

$\begin{aligned} r_A(x) \text{ for arbitrary } A \\ \text{Write } A &= \{a_n\}_{n=1}^N \text{ with } N \in \mathbb{N} \cup \{\infty\} \text{ and } a_n < a_{n+1} \text{ for } 1 \leq n < N. \\ \text{For every } t \in \{0, \dots, a_1 - 1\}, \text{ define the density of } r_A^{-1}(\{t\}) \text{ as} \\ \mathbf{d} r_A^{-1}(\{t\}) &:= \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\}) \cap [0, x]|}{x + 1} \end{aligned}$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$.

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 0 we have

$$\begin{split} r_A^{-1}(\{0\}) \cap [0,x] &= \{0\}, \\ r_A^{-1}(\{1\}) \cap [0,x] &= \{\}, \\ r_A^{-1}(\{2\}) \cap [0,x] &= \{\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 1 we have

$$\begin{split} r_A^{-1}(\{0\}) \cap [0,x] &= \{0\}, \\ r_A^{-1}(\{1\}) \cap [0,x] &= \{1\}, \\ r_A^{-1}(\{2\}) \cap [0,x] &= \{\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 2 we have

$$\begin{split} r_A^{-1}(\{0\}) \cap [0,x] &= \{0\}, \\ r_A^{-1}(\{1\}) \cap [0,x] &= \{1\}, \\ r_A^{-1}(\{2\}) \cap [0,x] &= \{2\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 3 we have

$$\begin{split} r_A^{-1}(\{0\}) &\cap [0,x] = \{0,3\}, \\ r_A^{-1}(\{1\}) &\cap [0,x] = \{1\}, \\ r_A^{-1}(\{2\}) &\cap [0,x] = \{2\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 4 we have

$$\begin{split} r_A^{-1}(\{0\}) &\cap [0,x] = \{0,3\}, \\ r_A^{-1}(\{1\}) &\cap [0,x] = \{1,4\}, \\ r_A^{-1}(\{2\}) &\cap [0,x] = \{2\}. \end{split}$$

$$dr_A^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\})| + |0|, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 5 we have

 $r_{A}^{-1}(\{0\}) \cap [0, x] = \{0, 3\},$ $r_{A}^{-1}(\{1\}) \cap [0, x] = \{1, 4\},$ $r_{A}^{-1}(\{2\}) \cap [0, x] = \{2, 5\}.$

$$dr_A^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\})| + |0|, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 6 we have

$$\begin{split} r_A^{-1}(\{0\}) &\cap [0,x] = \{0,3,6\}, \\ r_A^{-1}(\{1\}) &\cap [0,x] = \{1,4\}, \\ r_A^{-1}(\{2\}) &\cap [0,x] = \{2,5\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 7 we have

$$\begin{split} r_A^{-1}(\{0\}) &\cap [0,x] = \{0,3,6\}, \\ r_A^{-1}(\{1\}) &\cap [0,x] = \{1,4,7\}, \\ r_A^{-1}(\{2\}) &\cap [0,x] = \{2,5\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 8 we have

$$\begin{split} r_A^{-1}(\{0\}) &\cap [0,x] = \{0,3,6,8\}, \\ r_A^{-1}(\{1\}) &\cap [0,x] = \{1,4,7\}, \\ r_A^{-1}(\{2\}) &\cap [0,x] = \{2,5\}. \end{split}$$

$$\mathsf{d} r_A^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\})| + [0, x]}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 9 we have

 $\begin{aligned} r_A^{-1}(\{0\}) \cap [0,x] &= \{0,3,6,8\}, \\ r_A^{-1}(\{1\}) \cap [0,x] &= \{1,4,7,9\}, \\ r_A^{-1}(\{2\}) \cap [0,x] &= \{2,5\}. \end{aligned}$

$$\mathsf{d} r_A^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\})| + [0, x]}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 10 we have

 $\begin{aligned} r_A^{-1}(\{0\}) \cap [0,x] &= \{0,3,6,8\}, \\ r_A^{-1}(\{1\}) \cap [0,x] &= \{1,4,7,9\}, \\ r_A^{-1}(\{2\}) \cap [0,x] &= \{2,5,10\}. \end{aligned}$

$$\mathsf{d} r_A^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_A^{-1}(\{t\})| + [0, x]}{x + 1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 11 we have

$$\begin{split} r_A^{-1}(\{0\}) &\cap [0,x] = \{0,3,6,8,11\}, \\ r_A^{-1}(\{1\}) &\cap [0,x] = \{1,4,7,9\}, \\ r_A^{-1}(\{2\}) &\cap [0,x] = \{2,5,10\}. \end{split}$$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0|, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 12 we have

 $r_A^{-1}(\{0\}) \cap [0, x] = \{0, 3, 6, 8, 11\},$ $r_A^{-1}(\{1\}) \cap [0, x] = \{1, 4, 7, 9, 12\},$ $r_A^{-1}(\{2\}) \cap [0, x] = \{2, 5, 10\}.$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0|, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 13 we have

 $r_A^{-1}(\{0\}) \cap [0, x] = \{0, 3, 6, 8, 11\},$ $r_A^{-1}(\{1\}) \cap [0, x] = \{1, 4, 7, 9, 12\},$ $r_A^{-1}(\{2\}) \cap [0, x] = \{2, 5, 10, 13\}.$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |v_{A}^{-1}(t)|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 14 we have

 $r_A^{-1}(\{0\}) \cap [0, x] = \{0, 3, 6, 8, 11, 14\},$ $r_A^{-1}(\{1\}) \cap [0, x] = \{1, 4, 7, 9, 12\},$ $r_A^{-1}(\{2\}) \cap [0, x] = \{2, 5, 10, 13\}.$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 15 we have

 $r_A^{-1}(\{0\}) \cap [0, x] = \{0, 3, 6, 8, 11, 14\},\$ $r_A^{-1}(\{1\}) \cap [0, x] = \{1, 4, 7, 9, 12, 15\},\$ $r_A^{-1}(\{2\}) \cap [0, x] = \{2, 5, 10, 13\}.$

$$\mathsf{d} r_{\mathcal{A}}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{\mathcal{A}}^{-1}(\{t\})| + [0, x]}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 16 we have

 $\begin{aligned} r_A^{-1}(\{0\}) \cap [0,x] &= \{0,3,6,8,11,14,16\}, \\ r_A^{-1}(\{1\}) \cap [0,x] &= \{1,4,7,9,12,15\}, \\ r_A^{-1}(\{2\}) \cap [0,x] &= \{2,5,10,13\}. \end{aligned}$

$$\mathsf{d} r_{\mathcal{A}}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{\mathcal{A}}^{-1}(\{t\})| + [0, x]}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 17 we have

 $r_A^{-1}(\{0\}) \cap [0, x] = \{0, 3, 6, 8, 11, 14, 16\},\$ $r_A^{-1}(\{1\}) \cap [0, x] = \{1, 4, 7, 9, 12, 15, 17\},\$ $r_A^{-1}(\{2\}) \cap [0, x] = \{2, 5, 10, 13\}.$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |v_{A}^{-1}(t)|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 18 we have

 $\begin{aligned} r_A^{-1}(\{0\}) \cap [0, x] &= \{0, 3, 6, 8, 11, 14, 16, 18\}, \\ r_A^{-1}(\{1\}) \cap [0, x] &= \{1, 4, 7, 9, 12, 15, 17\}, \\ r_A^{-1}(\{2\}) \cap [0, x] &= \{2, 5, 10, 13\}. \end{aligned}$

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |v|, x}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 19 we have

 $\begin{aligned} r_A^{-1}(\{0\}) \cap [0, x] &= \{0, 3, 6, 8, 11, 14, 16, 18\}, \\ r_A^{-1}(\{1\}) \cap [0, x] &= \{1, 4, 7, 9, 12, 15, 17, 19\}, \\ r_A^{-1}(\{2\}) \cap [0, x] &= \{2, 5, 10, 13\}. \end{aligned}$
$r_{A}(x) \text{ for arbitrary } A$ Write $A = \{a_{n}\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup \{\infty\}$ and $a_{n} < a_{n+1}$ for $1 \leq n < N$. For every $t \in \{0, \dots, a_{1} - 1\}$, define the density of $r_{A}^{-1}(\{t\})$ as

$$dr_{A}^{-1}(\{t\}) := \lim_{x \to \infty} \frac{|r_{A}^{-1}(\{t\})| + |0|, x|}{x+1}$$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 20 we have

 $\begin{aligned} r_A^{-1}(\{0\}) \cap [0, x] &= \{0, 3, 6, 8, 11, 14, 16, 18\}, \\ r_A^{-1}(\{1\}) \cap [0, x] &= \{1, 4, 7, 9, 12, 15, 17, 19\}, \\ r_A^{-1}(\{2\}) \cap [0, x] &= \{2, 5, 10, 13, 20\}. \end{aligned}$

$r_{A}(x) \text{ for arbitrary } A$ Write $A = \{a_{n}\}_{n=1}^{N}$ with $N \in \mathbb{N} \cup \{\infty\}$ and $a_{n} < a_{n+1}$ for $1 \leq n < N$. For every $t \in \{0, \dots, a_{1} - 1\}$, define the density of $r_{A}^{-1}(\{t\})$ as

 $\mathbf{d} r_A^{-1}(\{t\}) := \lim_{x \to \infty} \frac{\left| r_A^{-1}(\{t\}) \cap [0, x] \right|}{x + 1}$

if the limit exists.

Illustration

Suppose $A = \{3, 8, 18, 21\}$. For x = 20 we have

 $r_A^{-1}(\{0\}) \cap [0, x] = \{0, 3, 6, 8, 11, 14, 16, 18\},\$ $r_A^{-1}(\{1\}) \cap [0, x] = \{1, 4, 7, 9, 12, 15, 17, 19\},\$ $r_A^{-1}(\{2\}) \cap [0, x] = \{2, 5, 10, 13, 20\}.$

Fact

For every $x \in \mathbb{N}_0$ we have

 $\left|r^{-1}(\{0\})\cap[0,x]\right|\geqslant\cdots\geqslant\left|r^{-1}\left(\{a_1-1\}\right)\cap[0,x]\right|.$

If $A \subseteq a_1\mathbb{N}$, then for every $t \in \{0, \ldots, a_1 - 1\}$ and $x \in \mathbb{N}_0$ we have $r_A(x) = x \mod a_1$, and so

$$|r_A^{-1}({t}) \cap [0,x]| = |\{y \in \mathbb{N}_0 : y \mod a_1 = t\} \cap [0,x]| = \left|\frac{x-t}{a_1}\right| + 1.$$

$\begin{aligned} r_{A}(x) \text{ for arbitrary } A\\ \text{If } A \subseteq a_{1}\mathbb{N}, \text{ then for every } t \in \{0, \dots, a_{1} - 1\} \text{ and } x \in \mathbb{N}_{0} \text{ we have }\\ r_{A}(x) = x \mod a_{1}, \text{ and so} \\ \left|r_{A}^{-1}(\{t\}) \cap [0, x]\right| = \left|\{y \in \mathbb{N}_{0} : y \mod a_{1} = t\} \cap [0, x]\right| = \left\lfloor \frac{x - t}{a_{1}} \right\rfloor + 1. \end{aligned}$ It follows that for every $x \in \mathbb{N}_{0}$ we have $\begin{aligned} \frac{\left|r^{-1}(\{a_{1} - 1\}) \cap [0, x]\right|}{x + 1} \geqslant \frac{\left\lfloor (x + 1)/a_{1} \right\rfloor}{x + 1} \xrightarrow{x \to \infty} \frac{1}{a_{1}} \end{aligned}$ and

 $\frac{\left|r^{-1}\left(\{0\}\right)\cap\left[0,x\right]\right|}{x+1}\leqslant\frac{\left\lfloor x/a_{1}\right\rfloor+1}{\left\lfloor x/a_{1}\right\rfloor a_{1}+1}\xrightarrow{x\to\infty}\frac{1}{a_{1}}.$

$$\begin{split} r_{A}(x) & \text{for arbitrary } A \\ \text{If } A \subseteq a_{1}\mathbb{N}, \text{ then for every } t \in \{0, \dots, a_{1} - 1\} \text{ and } x \in \mathbb{N}_{0} \text{ we have } \\ r_{A}(x) = x \mod a_{1}, \text{ and so} \\ \left|r_{A}^{-1}(\{t\}) \cap [0, x]\right| = \left|\{y \in \mathbb{N}_{0} : y \mod a_{1} = t\} \cap [0, x]\right| = \left\lfloor \frac{x - t}{a_{1}} \right\rfloor + 1. \\ \text{It follows that for every } x \in \mathbb{N}_{0} \text{ we have} \\ & \frac{\left|r^{-1}(\{a_{1} - 1\}) \cap [0, x]\right|}{x + 1} \geqslant \frac{\left\lfloor (x + 1)/a_{1} \right\rfloor}{x + 1} \xrightarrow{x \to \infty} \frac{1}{a_{1}} \\ \text{and} \\ & \frac{\left|r^{-1}(\{0\}) \cap [0, x]\right|}{x + 1} \leqslant \frac{\left\lfloor x/a_{1} \right\rfloor + 1}{\left\lfloor x/a_{1} \right\rfloor a_{1} + 1} \xrightarrow{x \to \infty} \frac{1}{a_{1}}. \end{split}$$

If $|A| < \infty$ and $A \not\subseteq a_1 \mathbb{N}$

x + 1

$$\begin{aligned} r_A(x) \text{ for arbitrary } A \\ \text{If } A \subseteq a_1 \mathbb{N}, \text{ then for every } t \in \{0, \dots, a_1 - 1\} \text{ and } x \in \mathbb{N}_0 \text{ we have } \\ r_A(x) = x \mod a_1, \text{ and so} \\ \left| r_A^{-1}(\{t\}) \cap [0, x] \right| = \left| \{y \in \mathbb{N}_0 : y \mod a_1 = t\} \cap [0, x] \right| = \left\lfloor \frac{x - t}{a_1} \right\rfloor + 1. \end{aligned}$$
It follows that for every $x \in \mathbb{N}_0$ we have
$$\begin{aligned} \frac{\left| r^{-1}(\{a_1 - 1\}) \cap [0, x] \right|}{x + 1} \geqslant \frac{\lfloor (x + 1)/a_1 \rfloor}{x + 1} \xrightarrow{x \to \infty} \frac{1}{a_1} \end{aligned}$$
and

$$\frac{r^{-1}(\{0\}) \cap [0,x]|}{x+1} \leqslant \frac{\lfloor x/a_1 \rfloor + 1}{\lfloor x/a_1 \rfloor a_1 + 1} \xrightarrow{x \to \infty} \frac{1}{a_1}$$

If $|A| < \infty$ and $A \not\subseteq a_1 \mathbb{N}$ then for every $i \in \mathbb{N}$, $|r_A^{-1}(\{0\}) \cap [(i-1)a_N, ia_N - 1]|$ $- |r_A^{-1}(\{a_1 - 1\}) \cap [(i-1)a_N, ia_N - 1]| \ge 1$,

$$\begin{aligned} r_{A}(x) \text{ for arbitrary } A \\ \text{If } A \subseteq a_{1}\mathbb{N}, \text{ then for every } t \in \{0, \dots, a_{1} - 1\} \text{ and } x \in \mathbb{N}_{0} \text{ we have } \\ r_{A}(x) = x \mod a_{1}, \text{ and so} \\ |r_{A}^{-1}(\{t\}) \cap [0, x]| = |\{y \in \mathbb{N}_{0} : y \mod a_{1} = t\} \cap [0, x]| = \left\lfloor \frac{x - t}{a_{1}} \right\rfloor + 1. \\ \text{It follows that for every } x \in \mathbb{N}_{0} \text{ we have} \\ \frac{|r^{-1}(\{a_{1} - 1\}) \cap [0, x]|}{x + 1} \geqslant \frac{\lfloor (x + 1)/a_{1} \rfloor}{x + 1} \xrightarrow{x \to \infty} \frac{1}{a_{1}} \\ \text{and} \\ \frac{|r^{-1}(\{0\}) \cap [0, x]|}{x + 1} \leqslant \frac{\lfloor x/a_{1} \rfloor + 1}{\lfloor x/a_{1} \rfloor a_{1} + 1} \xrightarrow{x \to \infty} \frac{1}{a_{1}}. \\ \text{If } |A| < \infty \text{ and } A \not\subseteq a_{1}\mathbb{N} \text{ then for every } i \in \mathbb{N}, \\ |r_{A}^{-1}(\{0\}) \cap [(i - 1)a_{N}, ia_{N} - 1]| \\ &- |r_{A}^{-1}(\{a_{1} - 1\}) \cap [(i - 1)a_{N}, ia_{N} - 1]| \geqslant 1, \end{aligned}$$

and so

$$|r_A^{-1}({0}) \cap [0, ia_N - 1]| - |r_A^{-1}({a_1 - 1}) \cap [0, ia_N - 1]| \ge i.$$

Theorem

If $A \subseteq a_1\mathbb{N}$, then the density sequence $(\mathbf{d}r_A^{-1}(\{t\}))_{t=0}^{a_1-1}$ exists and is constant. The converse also holds in the case $|A| < \infty$.

Theorem

If $A \subseteq a_1\mathbb{N}$, then the density sequence $(\mathbf{d}r_A^{-1}(\{t\}))_{t=0}^{a_1-1}$ exists and is constant. The converse also holds in the case $|A| < \infty$.

Examples

▶ If $A = \{6n - 3\}_{n=1}^{\infty} \subseteq 3\mathbb{N}$, then the density sequence is constant.

Theorem

If $A \subseteq a_1\mathbb{N}$, then the density sequence $(\mathbf{d}r_A^{-1}(\{t\}))_{t=0}^{a_1-1}$ exists and is constant. The converse also holds in the case $|A| < \infty$.

Examples

- ▶ If $A = \{6n 3\}_{n=1}^{\infty} \subseteq 3\mathbb{N}$, then the density sequence is constant.
- ▶ If $A = \{6n 3\}_{n=1}^{\infty} \cup B$, where $\emptyset \neq B \subseteq \{6n 4\}_{n=2}^{\infty} \cup \{6n 5\}_{n=2}^{\infty}$ and $|B \cap [0, x]| = o(x)$, then the density sequence remains constant although $A \not\subseteq 3\mathbb{N}$.

Theorem

If $A \subseteq a_1\mathbb{N}$, then the density sequence $(\mathbf{d}r_A^{-1}(\{t\}))_{t=0}^{a_1-1}$ exists and is constant. The converse also holds in the case $|A| < \infty$.

Examples

- ▶ If $A = \{6n 3\}_{n=1}^{\infty} \subseteq 3\mathbb{N}$, then the density sequence is constant.
- ▶ If $A = \{6n 3\}_{n=1}^{\infty} \cup B$, where $\emptyset \neq B \subseteq \{6n 4\}_{n=2}^{\infty} \cup \{6n 5\}_{n=2}^{\infty}$ and $|B \cap [0, x]| = o(x)$, then the density sequence remains constant although $A \not\subseteq 3\mathbb{N}$.

• If $A = \{6n - 3\}_{n=1}^{\infty} \cup B$, where $B = \{4\}$, then

 $r_A^{-1}(\{t\}) = \begin{cases} \{0,4,8\} \cup (6\mathbb{N}-3) \cup (6\mathbb{N}+1) \cup (6\mathbb{N}+6), & \text{if } t = 0; \\ \{1,5\} \cup (6\mathbb{N}+4) \cup (6\mathbb{N}+8), & \text{if } t = 1; \\ \{2,6\} \cup (6\mathbb{N}+5), & \text{if } t = 2, \end{cases}$

and so the density sequence is not constant.

$r_A(x)$ for arbitrary ASuppose $A = \{a'_n + (n-1)d\}_{n=1}^{\infty}$, where $2 \leq a'_1 \leq a'_2 \leq \cdots$ and $d \in \mathbb{N}_0$.

$$\begin{split} r_A(x) & \text{for arbitrary } A\\ \text{Suppose } A = \{a'_n + (n-1)d\}_{n=1}^{\infty}, \text{ where } 2 \leqslant a'_1 \leqslant a'_2 \leqslant \cdots \text{ and } d \in \mathbb{N}_0.\\ \text{Then for every } x_1 \in [a'_n + (n-1)d, a'_{n+1} + nd), \text{ we have}\\ x_2 = x_1 - [a'_n + (n-1)d] < (a'_{n+1} - a'_n) + d. \end{split}$$

$$\begin{split} r_A(x) & \text{for arbitrary } A\\ \text{Suppose } A = \{a'_n + (n-1)d\}_{n=1}^{\infty}, \text{ where } 2 \leqslant a'_1 \leqslant a'_2 \leqslant \cdots \text{ and } d \in \mathbb{N}_0.\\ \text{Then for every } x_1 \in [a'_n + (n-1)d, a'_{n+1} + nd), \text{ we have}\\ x_2 = x_1 - [a'_n + (n-1)d] < (a'_{n+1} - a'_n) + d. \end{split}$$

If $a'_{n+1} - a'_n < a'_2$, then $x_3 = x_2 - a'_1$, $x_4 = x_2 - 2a'_1$, ..., $r_A(x_1) = x_2 - [R_A(x_1) - 2]a'_1$.
$$\begin{split} r_{\mathcal{A}}(x) & \text{for arbitrary } \mathcal{A} \\ \text{Suppose} & A = \{a'_n + (n-1)d\}_{n=1}^{\infty}, \text{ where } 2 \leqslant a'_1 \leqslant a'_2 \leqslant \cdots \text{ and } d \in \mathbb{N}_0. \\ \text{Then for every } x_1 \in [a'_n + (n-1)d, a'_{n+1} + nd), \text{ we have} \\ & x_2 = x_1 - [a'_n + (n-1)d] < (a'_{n+1} - a'_n) + d. \end{split}$$

If $a'_{n+1} - a'_n < a'_2$, then

 $\begin{aligned} x_3 &= x_2 - a_1', \quad x_4 = x_2 - 2a_1', \quad \dots, \quad r_A(x_1) = x_2 - [R_A(x_1) - 2] a_1'. \\ \text{Thus, } r_A(x_1) &= 0 \text{ if and only if } x_1 = [a_n' + (n-1)d] + ia_1' \text{ for some} \\ i \in \{0, \dots, \lceil (a_{n+1}' - a_n' + d) / a_1' \rceil - 1 \}. \end{aligned}$

$$\begin{split} r_{A}(x) & \text{for arbitrary } A\\ \text{Suppose } A = \{a'_{n} + (n-1)d\}_{n=1}^{\infty}, \text{ where } 2 \leqslant a'_{1} \leqslant a'_{2} \leqslant \cdots \text{ and } d \in \mathbb{N}_{0}.\\ \text{Then for every } x_{1} \in [a'_{n} + (n-1)d, a'_{n+1} + nd), \text{ we have}\\ x_{2} = x_{1} - [a'_{n} + (n-1)d] < (a'_{n+1} - a'_{n}) + d. \end{split}$$

If $a'_{n+1} - a'_n < a'_2$, then

 $\begin{aligned} x_3 &= x_2 - a_1', \quad x_4 = x_2 - 2a_1', \quad \dots, \quad r_A(x_1) = x_2 - [R_A(x_1) - 2] a_1'. \\ \text{Thus, } r_A(x_1) &= 0 \text{ if and only if } x_1 = [a_n' + (n-1)d] + ia_1' \text{ for some} \\ i \in \{0, \dots, \lceil (a_{n+1}' - a_n' + d) / a_1' \rceil - 1 \}. \end{aligned}$

If $a'_1 \mid a'_n$ for every $n \in \mathbb{N}$, then

$$\left|r_A^{-1}(\{0\})\cap \left[0,a_{n+1}'+nd
ight)\right|\sim rac{a_{n+1}'}{a_1'}+n\left\lceilrac{d}{a_1'}
ight
ceil,$$

 $\begin{array}{l} r_{A}(x) \mbox{ for arbitrary } A \\ \mbox{Suppose } A &= \{a'_{n} + (n-1)d\}_{n=1}^{\infty}, \mbox{ where } 2 \leqslant a'_{1} \leqslant a'_{2} \leqslant \cdots \mbox{ and } d \in \mathbb{N}_{0}. \\ \mbox{Then for every } x_{1} \in [a'_{n} + (n-1)d, a'_{n+1} + nd), \mbox{ we have} \\ &\qquad x_{2} = x_{1} - [a'_{n} + (n-1)d] < (a'_{n+1} - a'_{n}) + d. \\ \mbox{If } a'_{n+1} - a'_{n} < a'_{2}, \mbox{ then} \\ &\qquad x_{3} = x_{2} - a'_{1}, \mbox{ } x_{4} = x_{2} - 2a'_{1}, \mbox{ } \dots, \mbox{ } r_{A}(x_{1}) = x_{2} - [R_{A}(x_{1}) - 2]a'_{1}. \end{array}$

Thus, $r_A(x_1) = 0$ if and only if $x_1 = [a'_n + (n-1)d] + ia'_1$ for some $i \in \{0, \dots, \lceil (a'_{n+1} - a'_n + d) / a'_1 \rceil - 1 \}$.

If $a'_1 \mid a'_n$ for every $n \in \mathbb{N}$, then

$$\left|r_{A}^{-1}(\{0\})\cap\left[0,a_{n+1}'+nd
ight)\right|\sim rac{a_{n+1}'}{a_{1}'}+n\left\lceilrac{d}{a_{1}'}
ight
ceil,$$

and so

$$\mathbf{d}r_{A}^{-1}(\{0\}) = \lim_{n \to \infty} \frac{a'_{n+1} + na'_{1} \left\lceil d/a'_{1} \right\rceil}{a'_{1} \left(a'_{n+1} + nd\right)}$$

Theorem

Let $d \in \mathbb{N}_0$. Let $A = \{a'_n + (n-1)d\}_{n=1}^{\infty} \subseteq \mathbb{N}$, where $2 \leq a'_1 \leq a'_2 \leq \cdots$ and $a'_1 \mid a'_n$ for every $n \in \mathbb{N}$. If there exists $m \in \mathbb{N}$ such that for every integer $n \geq m$ we have $a'_{n+1} - a'_n < a'_2$, then

$$\mathsf{d} r_A^{-1}(\{0\}) = \lim_{n \to \infty} \frac{a'_{n+1} + na'_1 \left\lceil d/a'_1 \right\rceil}{a'_1 \left(a'_{n+1} + nd\right)}$$

provided the limit exists.

Theorem

Let $d \in \mathbb{N}_0$. Let $A = \{a'_n + (n-1)d\}_{n=1}^{\infty} \subseteq \mathbb{N}$, where $2 \leq a'_1 \leq a'_2 \leq \cdots$ and $a'_1 \mid a'_n$ for every $n \in \mathbb{N}$. If there exists $m \in \mathbb{N}$ such that for every integer $n \geq m$ we have $a'_{n+1} - a'_n < a'_2$, then

$$\mathbf{d} r_A^{-1}(\{0\}) = \lim_{n \to \infty} \frac{a'_{n+1} + na'_1 \left\lceil d/a'_1 \right\rceil}{a'_1 \left(a'_{n+1} + nd\right)},$$

provided the limit exists.

Example

▶ If $A = \{a_1 + (n-1)d\}_{n=1}^{\infty} \subseteq \mathbb{N}$ is an arithmetic progression, where $d \in \mathbb{N}$, then

$$\mathbf{d} r_A^{-1}(\{0\}) = \frac{1}{d} \left[\frac{d}{a_1} \right].$$

This density is equal to $1/a_1$ if and only if $a_1 \mid d$, and is equal to 1 if and only if $a_1 = 1$ or d = 1.

14/16

Example

- ▶ Let $A = \{2\} \cup 7\mathbb{N}$. Then $A = \{a'_n + (n-1)d\}_{n=1}^{\infty}$, where d = 5 and
 - $a_1'=2$ and $a_n'=2n-2$ for every $n\geqslant 2$.

In particular, we have $a'_{n+1} - a'_n = 2$ for every $n \ge 2$, and hence the required integer *m* does not exist.

Example

▶ Let $A = \{2\} \cup 7\mathbb{N}$. Then $A = \{a'_n + (n-1)d\}_{n=1}^{\infty}$, where d = 5 and

$$a_1'=2$$
 and $a_n'=2n-2$ for every $n\geqslant 2$

In particular, we have $a'_{n+1} - a'_n = 2$ for every $n \ge 2$, and hence the required integer *m* does not exist. As a result, while

$$\lim_{n\to\infty}\frac{a_{n+1}'+na_1'\left\lceil d/a_1'\right\rceil}{a_1'\left(a_{n+1}'+nd\right)}=\frac{1}{2},$$

we have

 $r_A^{-1}(\{0\}) = \{0, 2, 4, 6\} \cup 7\mathbb{N} \cup (7\mathbb{N} + 2) \cup (7\mathbb{N} + 4) \cup (7\mathbb{N} + 6),$ and so

$$\mathbf{d}r_A^{-1}(\{0\}) = \frac{4}{7}$$

References

- ▶ J. Hoseana and Steven, On a sequence of densities generated by the greedy algorithm, São Paulo J. Math. Sci. (2022).
- ► F. Luca and R. Thangadurai, On an arithmetic function considered by Pillai, J. Théor. Nr. Bordx. 21 (2009), 693–699.
- A. Mukhopadhyay, R. Thangadurai, and G. K. Viswanadham, Unique representation of integers with base A, Arch. Math. 105 (2015), 119– 128.
- S. S. Pillai, On an arithmetic function concerning primes, Annamalai Univer. J. 1 (1930), 159–167.
- Steven and J. Hoseana, The prime-power map, J. Integer Seq. 24 (2021), 21.2.2.

Thank You!

Jonathan Hoseana j.hoseana@unpar.ac.id sites.google.com/view/jonathanhoseana